人工蜂群算法的python代码
时间: 2023-10-04 15:04:18 浏览: 144
人工蜂群算法(Artificial Bee Colony)是一种优化算法,python3.8案例代码
以下是一个简单的人工蜂群算法的 Python 代码:
```python
import random
import numpy as np
# 定义问题
def objective(x):
return x**2 + 5*np.sin(x)
# 定义人工蜂群算法函数
def ABC(obj_func, lb, ub, dim, n_bees, max_it):
best_sol = None
best_obj = np.inf
# 初始化蜜蜂群
hive = []
for i in range(n_bees):
sol = {'position': np.random.uniform(lb, ub, dim)}
sol['cost'] = obj_func(sol['position'])
hive.append(sol)
if sol['cost'] < best_obj:
best_obj = sol['cost']
best_sol = sol
# 开始迭代
for it in range(max_it):
# 雇佣蜜蜂阶段
for i in range(n_bees):
# 随机选择其它蜜蜂
k = random.randint(0, n_bees-1)
while k == i:
k = random.randint(0, n_bees-1)
# 生成新解
phi = np.random.uniform(-1, 1, dim)
new_pos = hive[i]['position'] + phi * (hive[i]['position'] - hive[k]['position'])
new_pos = np.clip(new_pos, lb, ub)
new_cost = obj_func(new_pos)
# 更新蜜蜂位置
if new_cost < hive[i]['cost']:
hive[i]['position'] = new_pos
hive[i]['cost'] = new_cost
# 更新最优解
if hive[i]['cost'] < best_obj:
best_obj = hive[i]['cost']
best_sol = hive[i]
# 侦查蜜蜂阶段
for i in range(n_bees):
# 随机生成新解
new_pos = np.random.uniform(lb, ub, dim)
new_cost = obj_func(new_pos)
# 更新蜜蜂位置
if new_cost < hive[i]['cost']:
hive[i]['position'] = new_pos
hive[i]['cost'] = new_cost
# 更新最优解
if hive[i]['cost'] < best_obj:
best_obj = hive[i]['cost']
best_sol = hive[i]
return best_sol['position'], best_sol['cost']
# 测试算法
lb = -5
ub = 5
dim = 1
n_bees = 50
max_it = 100
best_pos, best_cost = ABC(objective, lb, ub, dim, n_bees, max_it)
print('最优解:', best_pos)
print('最优值:', best_cost)
```
注:以上代码仅为示例,实际使用时需要根据具体问题进行适当修改。
阅读全文