python 实现Bundle Adjustment算法
时间: 2024-01-18 22:05:06 浏览: 330
Bundle Adjustment是一种优化算法,可以在三维重建、SLAM、机器人导航等领域中得到广泛应用。Python中可以使用多种优化库来实现Bundle Adjustment算法,比如Scipy、PyTorch等。下面是一个使用Scipy实现Bundle Adjustment的示例代码:
```python
import numpy as np
from scipy.optimize import least_squares
# 定义优化函数
def fun(params, n_cameras, n_points, camera_indices, point_indices, points_2d):
# 相机参数和三维点的参数
camera_params = params[:n_cameras * 6].reshape((n_cameras, 6))
points_3d = params[n_cameras * 6:].reshape((n_points, 3))
# 初始化误差
err = []
# 循环计算重投影误差
for i in range(len(camera_indices)):
# 获取相机和三维点的索引
camera_index = camera_indices[i]
point_index = point_indices[i]
# 获取相机和三维点的参数
R = cv2.Rodrigues(camera_params[camera_index][0:3])[0]
t = camera_params[camera_index][3:6]
point_3d = points_3d[point_index]
# 计算重投影误差
point_2d = np.dot(R, point_3d) + t
point_2d = point_2d / point_2d[2]
err.append(point_2d[:2] - points_2d[i])
# 返回误差
return np.concatenate(err)
# 定义函数调用
def bundle_adjustment(camera_params, points_3d, camera_indices, point_indices, points_2d):
n_cameras = camera_params.shape[0]
n_points = points_3d.shape[0]
# 初始化优化参数
params = np.hstack((camera_params.ravel(), points_3d.ravel()))
# 调用优化函数
res = least_squares(fun, params, args=(n_cameras, n_points, camera_indices, point_indices, points_2d))
# 返回优化后的相机参数和三维点参数
return res.x[:n_cameras * 6].reshape((n_cameras, 6)), res.x[n_cameras * 6:].reshape((n_points, 3))
```
其中,`camera_params`表示所有相机的参数,`points_3d`表示所有三维点的参数,`camera_indices`和`point_indices`分别表示每个观测点对应的相机和三维点的索引,`points_2d`表示所有观测点的二维坐标。在优化函数`fun`中,通过计算重投影误差来最小化优化目标。最后,通过调用`least_squares`函数进行优化,得到最优的相机参数和三维点参数。
阅读全文