cannot claim for fdd50000.serial
时间: 2023-11-11 08:07:38 浏览: 91
很抱歉,根据提供的引用内容,我无法回答您的问题"cannot claim for fdd50000.serial?"。引用中提到了可能是由于输入的地址有误或者没有权限访问该网页导致的错误。建议您仔细检查输入的地址是否正确,并确保您有访问该网页的权限。如果问题仍然存在,您可以尝试联系网站管理员或者寻求其他解决方案。
相关问题
mRegistMains = mRegistMains.stream().collect(Collectors.collectingAndThen(Collectors.toCollection(() -> new TreeSet<>(Comparator.comparing(MRegistMain::getRegistno))), ArrayList::new)); 这块代码提示报错2023-07-10 18:31:36.078,ERROR,,[https-jsse-nio-26025-exec-10],[o.a.c.c.C.[.[.[.[dispatcherServlet]],Servlet.service() for servlet [dispatcherServlet] in context with path [/hisportal-server] threw exception [Request processing failed; nested exception is java.lang.ClassCastException: class [Ljava.lang.Object; cannot be cast to class ins.db.po.claim.MRegistMain ([Ljava.lang.Object; is in module java.base of loader 'bootstrap'; ins.db.po.claim.MRegistMain is in unnamed module of loader org.springframework.boot.loader.LaunchedURLClassLoader @6767c1fc)] with root cause java.lang.ClassCastException: class [Ljava.lang.Object; cannot be cast to class ins.db.po.claim.MRegistMain ([Ljava.lang.Object; is in module java.base of loader 'bootstrap'; ins.db.po.claim.MRegistMain is in unnamed module of loader org.springframework.boot.loader.LaunchedURLClassLoader @6767c1fc) 我该怎么改正这段代码
根据报错信息,看起来在使用 `Collectors.collectingAndThen()` 方法时,出现了将数组对象 `[Ljava.lang.Object;` 转换为 `MRegistMain` 的错误。这通常是由于查询结果集返回的类型不正确导致的。
您可以尝试使用 `Stream.map()` 方法来显式地将数组对象转换为 `MRegistMain` 对象。以下是修改后的代码示例:
```java
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.TreeSet;
import java.util.stream.Collectors;
// ...
List<MRegistMain> mRegistMains = mPolicyMainDao.getRegistMainList(aggreeNo, name, identifyNo);
if (mRegistMains != null && !mRegistMains.isEmpty()) {
List<MRegistMain> sortedAndDistinctMRegistMains = mRegistMains.stream()
.map(obj -> (MRegistMain) obj) // 将数组对象转换为 MRegistMain 对象
.collect(Collectors.collectingAndThen(Collectors.toCollection(() ->
new TreeSet<>(Comparator.comparing(MRegistMain::getRegistno))), ArrayList::new));
// sortedAndDistinctMRegistMains 即为去重且按照 getRegistno 属性排序后的列表
log.info("官网历史理赔查询结果集:: {}", sortedAndDistinctMRegistMains);
} else {
// 处理结果集为空的情况
}
```
通过在 `map()` 方法中进行类型转换,将数组对象转换为 `MRegistMain` 对象。然后再进行去重和排序操作。
请注意,这只是一个示例代码片段,具体实现可能需要根据您的业务逻辑进行调整。希望能帮到您!如果您还有任何问题,请随时提问。
v1 v2 ham Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat... ham Ok lar... Joking wif u oni... spam Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entry question(std txt rate)T&C's apply 08452810075over18's ham U dun say so early hor... U c already then say... ham Nah I don't think he goes to usf, he lives around here though spam FreeMsg Hey there darling it's been 3 week's now and no word back! I'd like some fun you up for it still? Tb ok! XxX std chgs to send, 螢1.50 to rcv ham Even my brother is not like to speak with me. They treat me like aids patent. ham As per your request 'Melle Melle (Oru Minnaminunginte Nurungu Vettam)' has been set as your callertune for all Callers. Press *9 to copy your friends Callertune spam WINNER!! As a valued network customer you have been selected to receivea 螢900 prize reward! To claim call 09061701461. Claim code KL341. Valid 12 hours only. spam Had your mobile 11 months or more? U R entitled to Update to the latest colour mobiles with camera for Free! Call The Mobile Update Co FREE on 08002986030 ham I'm gonna be home soon and i don't want to talk about this stuff anymore tonight, k? I've cried enough today. spam SIX chances to win CASH! From 100 to 20,000 pounds txt> CSH11 and send to 87575. Cost 150p/day, 6days, 16+ TsandCs apply Reply HL 4 info 以上格式的数据有3000条,运用朴素贝叶斯模型对以上格式的垃圾邮件进行分析,并写出详细代码
由于涉及到数据处理和代码实现,建议使用编程语言环境进行实现。以下是Python语言实现朴素贝叶斯分类器的示例代码:
```python
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
# 读取数据
data = pd.read_csv('spam.csv', encoding='latin-1')
# 删除无用的列
data.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
# 对列名进行重命名
data.columns = ['label', 'text']
# 将标签用数字表示
data['label'] = data['label'].map({'ham': 0, 'spam': 1})
# 划分训练集和测试集
train_data = data.sample(frac=0.8, random_state=1)
test_data = data.drop(train_data.index)
# 特征提取
vectorizer = CountVectorizer()
train_features = vectorizer.fit_transform(train_data['text'])
test_features = vectorizer.transform(test_data['text'])
# 训练模型
clf = MultinomialNB()
clf.fit(train_features, train_data['label'])
# 预测结果
predicted = clf.predict(test_features)
# 输出准确率
print('Accuracy:', clf.score(test_features, test_data['label']))
```
需要注意的是,以上代码仅为示例,具体实现可能需要根据数据的格式进行修改。此外,还可以使用更复杂的特征提取方法和模型调参来提高模型的准确率。
阅读全文