yolov8的框架讲解
时间: 2023-12-28 14:25:40 浏览: 220
YOLOv8是一种目标检测算法,它是YOLO(You Only Look Once)系列算法的最新版本。YOLOv8采用了Darknet作为其基础框架,并在COCO数据集上进行了预训练。
YOLOv8分为两个版本:分割模型和检测模型。
1. 分割模型(yolov8n-seg.pt):
- 分割模型是YOLOv8的一种变体,它在YOLOv8的基础上添加了分割功能。
- 分割模型的后缀为-seg,例如yolov8n-seg.pt。
- 分割模型可以用于目标检测和图像分割任务。
2. 检测模型(yolov8n.pt):
- 检测模型是YOLOv8的默认版本,没有后缀。
- 检测模型可以用于目标检测任务。
YOLOv8的框架基于Darknet,它使用卷积神经网络(CNN)进行目标检测。YOLOv8将输入图像分成多个网格,并为每个网格预测边界框和类别概率。然后,通过非极大值抑制(NMS)来过滤重叠的边界框,最终得到检测结果。
YOLOv8相比于之前的版本具有更高的检测精度和更快的检测速度。它在目标检测领域具有广泛的应用,可以用于实时目标检测、视频分析等任务。
阅读全文