python多项式拟合残差平方和
时间: 2023-09-12 20:09:37 浏览: 533
基于Python实现多项式拟合曲线【100011014】
5星 · 资源好评率100%
要计算多项式拟合的残差平方和,您可以使用numpy库中的polyval函数。polyval函数可以根据给定的多项式系数和自变量值计算出因变量值。
在计算残差平方和时,我们需要使用拟合得到的多项式函数,将自变量代入多项式函数得到预测值,然后与实际观测值进行比较计算残差。
下面是一个示例代码,展示如何计算多项式拟合的残差平方和:
```python
import numpy as np
# 输入数据
x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 5, 10, 15])
# 多项式拟合
degree = 2 # 多项式的次数
coefficients = np.polyfit(x, y, degree)
# 计算拟合值
predicted_values = np.polyval(coefficients, x)
# 计算残差平方和
residuals = y - predicted_values
residual_sum_of_squares = np.sum(residuals**2)
# 输出残差平方和
print("残差平方和:", residual_sum_of_squares)
```
在上面的代码中,我们首先进行了多项式拟合,然后使用polyval函数将自变量x代入拟合得到的多项式函数,得到预测值predicted_values。接下来,我们计算残差,即实际观测值y减去预测值predicted_values,并将其平方。最后,使用np.sum函数计算残差平方和。
希望对您有帮助!如果有其他问题,请随时提问。
阅读全文