解释这段代码void delay_us(uint32_t nus) { while(nus --) { __nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop(); __nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop(); __nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop(); __nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop(); __nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop(); __nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop(); __nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop();__nop(); __nop();__nop(); } }

时间: 2024-03-18 07:45:12 浏览: 74
这段代码是用来进行微秒级别的延时操作的。具体来说,该函数接收一个无符号32位整型参数nus,表示要延时的微秒数。该函数使用while循环进行延时,每次循环都是通过嵌入汇编指令__nop()来进行的。__nop()指令是一条空操作指令,不会对处理器状态和寄存器等造成影响,但是会占据一个CPU时钟周期的时间,因此可以用来进行延时操作。 在该函数中,该指令被连续调用了80次,因此总共会占据80个CPU时钟周期的时间,从而实现了一定的微秒级别的延时。 需要注意的是,该函数的延时时间并不是十分准确。因为不同的处理器时钟频率、编译器优化等因素都会影响到指令执行的时间,因此在实际应用中需要根据需求进行调整。同时,在进行较长时间的延时时,最好使用定时器等硬件方式来实现,以提高延时的精度和稳定性。
相关问题

void delay_us(uint16_t nus) { __asm( "PUSH A \n" //1T,压栈 "DELAY_XUS: \n" "LD A,fac_us \n" //1T,fac_us加载到累加器A "DELAY_US_1: \n" "NOP \n" //1T,nop延时 "DEC A \n" //1T,A-- "JRNE DELAY_US_1 \n" //不等于0,则跳转(2T)到DELAY_US_1继续执行,若等于0,则不跳转(1T). "NOP \n" //1T,nop延时 "DECW X \n" //1T,x-- "JRNE DELAY_XUS \n" //不等于0,则跳转(2T)到DELAY_XUS继续执行,若等于0,则不跳转(1T). "POP A \n" //1T,出栈 ); }

这段代码是一个用于微秒级延时的函数。它使用了内嵌汇编的方式来实现延时。 函数的输入参数 `nus` 是需要延时的微秒数。 这段代码主要的逻辑如下: 1. 将累加器A压栈(PUSH A)保存,以便后续使用。 2. 进入一个标签为 `DELAY_XUS` 的循环,该循环将执行 `fac_us` 次。 3. 在循环中,首先从累加器A中加载 `fac_us` 的值。然后执行一个空指令(NOP)来实现微秒级延时。 4. 累加器A递减1,并检查其是否为零。如果不为零,则跳转到标签 `DELAY_US_1` 继续执行延时。 5. 循环结束后,再执行一个空指令(NOP)进行微秒级延时。 6. 变量X递减1,并检查其是否为零。如果不为零,则跳转到标签 `DELAY_XUS` 继续执行整个延时函数。 7. 最后从栈中弹出累加器A的值(POP A),恢复原始状态。 需要注意的是,这段代码的具体实现可能依赖于特定的编译器和开发环境。在使用之前,请确保你已正确地初始化了相关的变量和寄存器。 希望这对你有所帮助!如果你还有其他问题,请随时提问。

基于stm32的智能鱼缸自动温控代码

以下是一个基于STM32的智能鱼缸自动温控代码的示例: ```c #include "stm32f10x.h" #include "stdio.h" #include "math.h" //定义DS18B20引脚 #define DS18B20_PIN GPIO_Pin_0 #define DS18B20_PORT GPIOA //定义继电器引脚 #define RELAY_PIN GPIO_Pin_1 #define RELAY_PORT GPIOA //定义温度阈值 #define TEMP_THRESHOLD 25.0 //延时函数 void Delay_us(uint32_t nus) { uint32_t i; for(i = 0; i < nus; i++) { __NOP(); } } //DS18B20复位函数 uint8_t DS18B20_Reset(void) { uint8_t i; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = DS18B20_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(DS18B20_PORT, &GPIO_InitStructure); GPIO_ResetBits(DS18B20_PORT, DS18B20_PIN); Delay_us(480); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(DS18B20_PORT, &GPIO_InitStructure); Delay_us(80); if(GPIO_ReadInputDataBit(DS18B20_PORT, DS18B20_PIN)) { return 0; } Delay_us(400); if(!GPIO_ReadInputDataBit(DS18B20_PORT, DS18B20_PIN)) { return 0; } while(GPIO_ReadInputDataBit(DS18B20_PORT, DS18B20_PIN)); return 1; } //DS18B20写位函数 void DS18B20_WriteBit(uint8_t bit) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = DS18B20_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(DS18B20_PORT, &GPIO_InitStructure); if(bit) { GPIO_ResetBits(DS18B20_PORT, DS18B20_PIN); Delay_us(5); GPIO_SetBits(DS18B20_PORT, DS18B20_PIN); Delay_us(90); } else { GPIO_ResetBits(DS18B20_PORT, DS18B20_PIN); Delay_us(90); GPIO_SetBits(DS18B20_PORT, DS18B20_PIN); Delay_us(5); } } //DS18B20写字节函数 void DS18B20_WriteByte(uint8_t byte) { uint8_t i; for(i = 0; i < 8; i++) { DS18B20_WriteBit(byte & 0x01); byte >>= 1; } } //DS18B20读位函数 uint8_t DS18B20_ReadBit(void) { uint8_t bit; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = DS18B20_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(DS18B20_PORT, &GPIO_InitStructure); GPIO_ResetBits(DS18B20_PORT, DS18B20_PIN); Delay_us(2); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(DS18B20_PORT, &GPIO_InitStructure); Delay_us(10); bit = GPIO_ReadInputDataBit(DS18B20_PORT, DS18B20_PIN); Delay_us(50); return bit; } //DS18B20读字节函数 uint8_t DS18B20_ReadByte(void) { uint8_t i; uint8_t byte = 0; for(i = 0; i < 8; i++) { byte >>= 1; if(DS18B20_ReadBit()) { byte |= 0x80; } } return byte; } //DS18B20读温度函数 float DS18B20_ReadTemp(void) { uint8_t temp[2]; float val; DS18B20_Reset(); DS18B20_WriteByte(0xCC); DS18B20_WriteByte(0x44); Delay_us(750000); DS18B20_Reset(); DS18B20_WriteByte(0xCC); DS18B20_WriteByte(0xBE); temp[0] = DS18B20_ReadByte(); temp[1] = DS18B20_ReadByte(); val = (float)(temp[1] << 8 | temp[0]) * 0.0625; return val; } //继电器控制函数 void Relay_Control(uint8_t state) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = RELAY_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(RELAY_PORT, &GPIO_InitStructure); if(state) { GPIO_SetBits(RELAY_PORT, RELAY_PIN); } else { GPIO_ResetBits(RELAY_PORT, RELAY_PIN); } } int main(void) { float temp; while(1) { temp = DS18B20_ReadTemp(); if(temp > TEMP_THRESHOLD) { Relay_Control(1); } else { Relay_Control(0); } } } ``` 此代码使用DS18B20传感器读取温度,如果温度高于设定的阈值,就会控制继电器开启风扇或者制冷器等来降低温度。请注意,在使用此代码之前,需要对STM32的GPIO进行初始化和配置。
阅读全文

相关推荐

最新推荐

recommend-type

浅谈int8_t int64_t size_t ssize_t的相关问题(详解)

同样,`uint8_t`、`uint16_t`、`uint32_t`和`uint64_t`是对应的无符号整数类型,它们的位宽与有符号类型相同,但不包含负值。 `size_t`是一个无符号整型,通常用来表示内存对象的大小。在32位系统上,它通常是`...
recommend-type

YOLOv3-训练-修剪.zip

YOLOv3-训练-修剪YOLOv3-训练-修剪的Python3.6、Pytorch 1.1及以上,numpy>1.16,tensorboard=1.13以上YOLOv3的训练参考[博客](https://blog.csdn.net/qq_34795071/article/details/90769094 )基于的ultralytics/yolov3代码大家也可以看下这个https://github.com/tanluren/yolov3-channel-and-layer-pruning正常训练(基线)python train.py --data data/VHR.data --cfg cfg/yolov3.cfg --weights/yolov3.weights --epochs 100 --batch-size 32 #后面的epochs自行更改 直接加载weights可以更好的收敛剪枝算法介绍本代码基于论文Learning Efficient Convolutional Networks Through Network Slimming (ICCV
recommend-type

毕业设计&课设_智能算法中台管理系统.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自