spdk_tgt是什么
时间: 2023-12-24 10:42:09 浏览: 93
SPDK_TGT (SPDK Target)是一种基于SPDK (Storage Performance Development Kit)开发的高性能SCSI Target软件。它可以将存储设备(如硬盘、固态硬盘)映射为逻辑单元,使得这些存储设备可以通过网络或本地连接提供给其他设备使用。SPDK_TGT使用SPDK作为底层I/O处理框架,具有低延迟、高吞吐量的优点,适用于数据中心、云计算等场景。此外,SPDK_TGT还提供了iSCSI和NVMe-oF等协议,可以为不同的场景提供高性能的存储解决方案。
相关问题
# discrepency loss for i in range(len(data_tgt_DSFE)): if i != mark: disc_loss += torch.mean(torch.abs( F.softmax(data_tgt_DSFE[mark], dim=1) - F.softmax(data_tgt_DSFE[i], dim=1) ))含义
这段代码的含义是计算一个叫做"discrepancy loss"的损失函数。该损失函数的计算方式是对于每一个数据样本,计算它与其他所有数据样本之间的softmax输出的差异的平均值。其中,data_tgt_DSFE是一个包含多个数据样本的列表,mark是当前正在处理的数据样本在列表中的索引。具体地说,对于每个非当前数据样本i,计算当前数据样本与i之间softmax输出的差异,然后将所有差异的平均值加入到discrepancy loss中。这个损失函数的目的是鼓励模型在不同的输入样本上产生不同的输出,以增加模型的多样性和鲁棒性。
class MSMDAERNet(nn.Module): def init(self, pretrained=False, number_of_source=15, number_of_category=4): super(MSMDAERNet, self).init() self.sharedNet = pretrained_CFE(pretrained=pretrained) # for i in range(1, number_of_source): # exec('self.DSFE' + str(i) + '=DSFE()') # exec('self.cls_fc_DSC' + str(i) + '=nn.Linear(32,' + str(number_of_category) + ')') for i in range(number_of_source): exec('self.DSFE' + str(i) + '=DSFE()') exec('self.cls_fc_DSC' + str(i) + '=nn.Linear(32,' + str(number_of_category) + ')') def forward(self, data_src, number_of_source, data_tgt=0, label_src=0, mark=0): ''' description: take one source data and the target data in every forward operation. the mmd loss is calculated between the source data and the target data (both after the DSFE) the discrepency loss is calculated between all the classifiers' results (test on the target data) the cls loss is calculated between the ground truth label and the prediction of the mark-th classifier 之所以target data每一条线都要过一遍是因为要计算discrepency loss, mmd和cls都只要mark-th那条线就行 param {type}: mark: int, the order of the current source data_src: take one source data each time number_of_source: int label_Src: corresponding label data_tgt: target data return {type} ''' mmd_loss = 0 disc_loss = 0 data_tgt_DSFE = [] if self.training == True: # common feature extractor data_src_CFE = self.sharedNet(data_src) data_tgt_CFE = self.sharedNet(data_tgt) # Each domian specific feature extractor # to extract the domain specific feature of target data for i in range(number_of_source): DSFE_name = 'self.DSFE' + str(i) data_tgt_DSFE_i = eval(DSFE_name)(data_tgt_CFE) data_tgt_DSFE.append(data_tgt_DSFE_i) # Use the specific feature extractor # to extract the source data, and calculate the mmd loss DSFE_name = 'self.DSFE' + str(mark) data_src_DSFE = eval(DSFE_name)(data_src_CFE) # mmd_loss += utils.mmd(data_src_DSFE, data_tgt_DSFE[mark]) mmd_loss += utils.mmd_linear(data_src_DSFE, data_tgt_DSFE[mark]) # discrepency loss for i in range(len(data_tgt_DSFE)): if i != mark: disc_loss += torch.mean(torch.abs( F.softmax(data_tgt_DSFE[mark], dim=1) - F.softmax(data_tgt_DSFE[i], dim=1) )) # domain specific classifier and cls_loss DSC_name = 'self.cls_fc_DSC' + str(mark) pred_src = eval(DSC_name)(data_src_DSFE) cls_loss = F.nll_loss(F.log_softmax( pred_src, dim=1), label_src.squeeze()) return cls_loss, mmd_loss, disc_loss中data_tgt_DSFE的长度
data_tgt_DSFE 的长度是 number_of_source,也就是目标数据经过每个领域特定特征提取器后得到的特征向量的个数。在 forward 函数中,for 循环会遍历所有的领域特定特征提取器,将目标数据经过每个领域特定特征提取器后得到的特征向量存储在 data_tgt_DSFE 列表中,因此 data_tgt_DSFE 的长度就等于 number_of_source。
阅读全文