src_mask和tgt_mask,feed_forward

时间: 2023-10-08 11:04:27 浏览: 45
在机器翻译任务中,编码器和解码器都需要进行自注意力机制的计算。自注意力机制是指在当前序列中,每个位置都需要与其他位置进行交互计算得到表示。为了达到这个目的,我们需要使用一个掩码矩阵来指定哪些位置可以进行交互计算,哪些位置需要被屏蔽掉。 在编码器中,我们使用src_mask来屏蔽源语言句子中的填充位置,因为这些位置不应该参与到注意力计算中。在解码器中,我们使用tgt_mask来屏蔽目标语言句子中的未预测位置和填充位置,因为这些位置在当前时间步并没有生成,也不应该参与到注意力计算中。 feed_forward是指在Transformer模型中的前馈神经网络,它将注意力计算得到的表示进行非线性变换,以便更好地表示序列中的语义信息。具体地,前馈神经网络由两个全连接层组成,中间使用ReLU作为激活函数。在第一层全连接层后添加了一个残差连接和一个Layer Normalization层,以增强模型的表达能力和稳定性。
相关问题

src_vocab,tgt_vocab的含义

src_vocab和tgt_vocab分别是源语言词汇表和目标语言词汇表的缩写。 src_vocab是指源语言词汇表,它包含了源语言中所有可能出现的词汇。在自然语言处理任务中,通常将源语言文本作为输入,例如机器翻译任务中的原文。src_vocab用于将源语言文本中的单词或符号映射到一个唯一的整数标识。这样做的目的是方便模型对输入进行处理和计算。 tgt_vocab是指目标语言词汇表,它包含了目标语言中所有可能出现的词汇。在机器翻译任务中,tgt_vocab通常表示翻译后的目标语言的词汇。与src_vocab类似,tgt_vocab也用整数标识来表示目标语言的单词或符号,以便模型进行处理和计算。 通过使用src_vocab和tgt_vocab,我们可以将源语言和目标语言的文本转化为模型可以理解和处理的数字表示形式。这有助于在机器翻译等任务中进行训练和推理过程。

class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model) self.pos_emb = PositionalEncoding(d_model) self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)]) def forward(self, dec_inputs, enc_inputs, enc_outputs): ''' dec_inputs: [batch_size, tgt_len] enc_intpus: [batch_size, src_len] enc_outputs: [batsh_size, src_len, d_model] ''' dec_outputs = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model] dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1).cuda() # [batch_size, tgt_len, d_model] dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs).cuda() # [batch_size, tgt_len, tgt_len] dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs).cuda() # [batch_size, tgt_len, tgt_len] dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequence_mask), 0).cuda() # [batch_size, tgt_len, tgt_len] dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # [batc_size, tgt_len, src_len] dec_self_attns, dec_enc_attns = [], [] for layer in self.layers: # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len] dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask) dec_self_attns.append(dec_self_attn) dec_enc_attns.append(dec_enc_attn) return dec_outputs, dec_self_attns, dec_enc_attns

这段代码是一个Decoder类的定义,用于实现Transformer模型中的解码器部分。具体来说,它包括以下几个部分: 1. `__init__`方法:初始化函数,用于定义并初始化Decoder的各个组件。其中,`tgt_emb`是一个词嵌入层,用于将目标语言的输入进行词嵌入表示;`pos_emb`是一个位置编码层,用于为输入添加位置信息;`layers`是一个由多个DecoderLayer组成的ModuleList,用于构建多层解码器。 2. `forward`方法:前向传播函数,定义了解码器的前向计算过程。参数包括`dec_inputs`(解码器的输入序列)、`enc_inputs`(编码器的输入序列)和`enc_outputs`(编码器的输出)。具体的计算过程如下: - 将解码器的输入序列通过词嵌入层进行词嵌入表示,得到`dec_outputs`; - 将`dec_outputs`通过位置编码层添加位置信息; - 根据解码器的输入序列生成self-attention的mask,用于屏蔽无效的位置信息; - 根据解码器的输入序列和编码器的输入序列生成encoder-decoder attention的mask,用于屏蔽无效的位置信息; - 通过多个DecoderLayer依次处理`dec_outputs`,得到最终的解码结果; - 返回解码结果、各层的self-attention结果和encoder-decoder attention结果。 注意:这段代码中的一些函数(如`get_attn_pad_mask`和`get_attn_subsequence_mask`)并未提供具体实现,可能是为了方便阅读省略了。你需要根据具体需要自行实现这些函数。

相关推荐

帮我看一些这段代码有什么问题:class EncoderDecoder(nn.Module): def init(self,encoder,decoder,source_embed,target_embed,generator): #encoder:代表编码器对象 #decoder:代表解码器对象 #source_embed:代表源数据的嵌入 #target_embed:代表目标数据的嵌入 #generator:代表输出部分类别生成器对象 super(EncoderDecoder,self).init() self.encoder=encoder self.decoder=decoder self.src_embed=source_embed self.tgt_embed=target_embed self.generator=generator def forward(self,source,target,source_mask,target_mask): #source:代表源数据 #target:代表目标数据 #source_mask:代表源数据的掩码张量 #target_mask:代表目标数据的掩码张量 return self.decode(self.encode(source,source_mask),source_mask, target,target_mask) def encode(self,source,source_mask): return self.encoder(self.src_embed(source),source_mask) def decode(self,memory,source_mask,target,target_mask): #memory:代表经历编码器编码后的输出张量 return self.decoder(self.tgt_embed(target),memory,source_mask,target) vocab_size=1000 d_model=512 encoder=en decoder=de source_embed=nn.Embedding(vocab_size,d_model) target_embed=nn.Embedding(vocab_size,d_model) generator=gen source=target=Variable(torch.LongTensor([[100,2,421,500],[491,998,1,221]])) source_mask=target_mask=Variable(torch.zeros(8,4,4)) ed=EncoderDecoder(encoder,decoder,source_embed,target_embed,generator ) ed_result=ed(source,target,source_mask,target_mask) print(ed_result) print(ed_result.shape)

Traceback (most recent call last): File "C:\Users\Administrator\Desktop\轨迹训练\Transformer_V2_radicla_test.py", line 146, in <module> main() File "C:\Users\Administrator\Desktop\轨迹训练\Transformer_V2_radicla_test.py", line 131, in main train_losses, val_losses = train(model, optimizer, criterion, traindataloader, valdataloader, epochs) # 模型训练 File "C:\Users\Administrator\Desktop\轨迹训练\Transformer_V2_radicla_test.py", line 65, in train pred = model(input_data, target) File "D:\anaconda2\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\Administrator\Desktop\轨迹训练\Transformer_V2_radicla_test.py", line 42, in forward output = self.decoder(tgt, memory) File "D:\anaconda2\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "D:\anaconda2\lib\site-packages\torch\nn\modules\transformer.py", line 291, in forward output = mod(output, memory, tgt_mask=tgt_mask, File "D:\anaconda2\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "D:\anaconda2\lib\site-packages\torch\nn\modules\transformer.py", line 577, in forward x = self.norm2(x + self._mha_block(x, memory, memory_mask, memory_key_padding_mask)) File "D:\anaconda2\lib\site-packages\torch\nn\modules\transformer.py", line 594, in _mha_block x = self.multihead_attn(x, mem, mem, File "D:\anaconda2\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "D:\anaconda2\lib\site-packages\torch\nn\modules\activation.py", line 1153, in forward attn_output, attn_output_weights = F.multi_head_attention_forward( File "D:\anaconda2\lib\site-packages\torch\nn\functional.py", line 5122, in multi_head_attention_forward k = k.contiguous().view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1) RuntimeError: shape '[10, 297, 1]' is invalid for input of size 300什么原因,如何解决?

class MSMDAERNet(nn.Module): def init(self, pretrained=False, number_of_source=15, number_of_category=4): super(MSMDAERNet, self).init() self.sharedNet = pretrained_CFE(pretrained=pretrained) # for i in range(1, number_of_source): # exec('self.DSFE' + str(i) + '=DSFE()') # exec('self.cls_fc_DSC' + str(i) + '=nn.Linear(32,' + str(number_of_category) + ')') for i in range(number_of_source): exec('self.DSFE' + str(i) + '=DSFE()') exec('self.cls_fc_DSC' + str(i) + '=nn.Linear(32,' + str(number_of_category) + ')') def forward(self, data_src, number_of_source, data_tgt=0, label_src=0, mark=0): ''' description: take one source data and the target data in every forward operation. the mmd loss is calculated between the source data and the target data (both after the DSFE) the discrepency loss is calculated between all the classifiers' results (test on the target data) the cls loss is calculated between the ground truth label and the prediction of the mark-th classifier 之所以target data每一条线都要过一遍是因为要计算discrepency loss, mmd和cls都只要mark-th那条线就行 param {type}: mark: int, the order of the current source data_src: take one source data each time number_of_source: int label_Src: corresponding label data_tgt: target data return {type} ''' mmd_loss = 0 disc_loss = 0 data_tgt_DSFE = [] if self.training == True: # common feature extractor data_src_CFE = self.sharedNet(data_src) data_tgt_CFE = self.sharedNet(data_tgt) # Each domian specific feature extractor # to extract the domain specific feature of target data for i in range(number_of_source): DSFE_name = 'self.DSFE' + str(i) data_tgt_DSFE_i = eval(DSFE_name)(data_tgt_CFE) data_tgt_DSFE.append(data_tgt_DSFE_i) # Use the specific feature extractor # to extract the source data, and calculate the mmd loss DSFE_name = 'self.DSFE' + str(mark) data_src_DSFE = eval(DSFE_name)(data_src_CFE) # mmd_loss += utils.mmd(data_src_DSFE, data_tgt_DSFE[mark]) mmd_loss += utils.mmd_linear(data_src_DSFE, data_tgt_DSFE[mark]) # discrepency loss for i in range(len(data_tgt_DSFE)): if i != mark: disc_loss += torch.mean(torch.abs( F.softmax(data_tgt_DSFE[mark], dim=1) - F.softmax(data_tgt_DSFE[i], dim=1) )) # domain specific classifier and cls_loss DSC_name = 'self.cls_fc_DSC' + str(mark) pred_src = eval(DSC_name)(data_src_DSFE) cls_loss = F.nll_loss(F.log_softmax( pred_src, dim=1), label_src.squeeze()) return cls_loss, mmd_loss, disc_loss中data_tgt_DSFE的长度

最新推荐

recommend-type

node-v4.9.0-linux-armv7l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v4.8.4-linux-armv6l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。