plt.savefig(f'D:\\czjblx\\smmx\\clf-pcl\\TEST\\yh_test\\优化迭代过程图\\优化迭代过程_{i}.png')和plt.show()有无先后顺序

时间: 2023-07-06 18:41:29 浏览: 145
在绘制 Matplotlib 图形时,`savefig()` 和 `show()` 方法的顺序是没有要求的。但是,如果要在显示图形之前将图片保存到文件中,应该先调用 `savefig()` 方法,再调用 `show()` 方法。这是因为在调用 `show()` 方法之后,Matplotlib 会清空图形并释放资源,此时再调用 `savefig()` 方法将不会保存任何内容。因此,正确的顺序应该是先调用 `savefig()` 方法,再调用 `show()` 方法。示例代码如下: ```python import pandas as pd import matplotlib.pyplot as plt # 读取 Excel 文件并提取所需的数据列 df = pd.read_excel('文件路径.xlsx') x = df['迭代轮数'] y = df['优化值'] # 创建 Figure 对象和 Axes 对象 fig, ax = plt.subplots() # 绘制折线图 ax.plot(x, y) # 设置 x 轴和 y 轴的标签 ax.set_xlabel('迭代轮数') ax.set_ylabel('优化值') # 保存图片 plt.savefig(f'D:\\czjblx\\smmx\\clf-pcl\\TEST\\yh_test\\优化迭代过程图\\优化迭代过程_{i}.png') # 显示图形 plt.show() ``` 需要将代码中的“文件路径.xlsx”和保存路径替换为实际的文件路径和保存路径。
相关问题

如何将绘制的图片进行保存,要求路径为f'D:\\czjblx\\smmx\\clf-pcl\\TEST\\yh_test\\优化迭代过程图\\优化迭代过程_{i}.png'

可以使用 Matplotlib 库中的 savefig() 方法来保存图片。可以在 pyplot 模块调用 savefig() 方法,指定保存路径和文件名。示例代码如下: ```python import pandas as pd import matplotlib.pyplot as plt # 读取 Excel 文件并提取所需的数据列 df = pd.read_excel('文件路径.xlsx') x = df['迭代轮数'] y = df['优化值'] # 创建 Figure 对象和 Axes 对象 fig, ax = plt.subplots() # 绘制折线图 ax.plot(x, y) # 设置 x 轴和 y 轴的标签 ax.set_xlabel('迭代轮数') ax.set_ylabel('优化值') # 保存图片 plt.savefig(f'D:\\czjblx\\smmx\\clf-pcl\\TEST\\yh_test\\优化迭代过程图\\优化迭代过程_{i}.png') ``` 需要将代码中的“文件路径.xlsx”和保存路径替换为实际的文件路径和保存路径。

修改代码错误: plt.plot(pre_array, 'g') plt.plot(test_labels, "r") df = pd.DataFrame({'pre_array': pre_array, 'test_labels': test_labels}) sns.lineplot(data=df, x="pre_array", y="test_labels", hue="event") plt.title('LSTM test mae: ' + str(loss_mae.item())) plt.savefig("lstm_test.png") plt.show()

根据您提供的代码,似乎没有定义 "event"。因此,您需要先定义 "event" 然后再使用它来绘制线图。 下面是修改后的代码: ```python import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # define event event = ["event"] * len(pre_array) # create dataframe df = pd.DataFrame({'pre_array': pre_array, 'test_labels': test_labels, 'event': event}) # plot the data plt.plot(pre_array, 'g') plt.plot(test_labels, "r") sns.lineplot(data=df, x="pre_array", y="test_labels", hue="event") plt.title('LSTM test mae: ' + str(loss_mae.item())) plt.savefig("lstm_test.png") plt.show() ``` 首先,我们定义了一个名为 "event" 的变量,它是一个包含 "event" 字符串的列表,长度与 "pre_array" 和 "test_labels" 相同。然后,我们使用这些变量定义了一个 Pandas DataFrame。最后,我们使用 Seaborn 绘制了带有 "event" 颜色编码的折线图。
阅读全文

相关推荐

from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier # 加载葡萄酒数据集 wine = load_wine() # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.3, random_state=42) # 初始化决策树模型 clf = DecisionTreeClassifier() # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # 输出准确率 print("7:3的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为3:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.25, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred1 = clf.predict(X_test) # 输出准确率 print("3:1的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为4:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.2, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred2 = clf.predict(X_test) # 输出准确率 print("4:1的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为9:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.1, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred3 = clf.predict(X_test) # 输出准确率 print("9:1的准确率:", clf.score(X_test, y_test))

depth = np.arange(1, 15) err_train_list = [] err_test_list = [] clf = DecisionTreeClassifier(criterion='entropy') for d in depth: clf.set_params(max_depth=d) clf.fit(x_train, y_train) y_train_pred = clf.predict(x_train) err_train = 1-accuracy_score(y_train, y_train_pred) err_train_list.append(err_train) y_test_pred = clf.predict(x_test) err_test = 1-accuracy_score(y_test, y_test_pred) err_test_list.append(err_test) print(d, '测试集错误率:%.2f%%' % (100 * err_test)) plt.figure(facecolor='w') plt.plot(depth, err_test_list, 'ro-', markeredgecolor='k', lw=2, label='测试集错误率') plt.plot(depth, err_train_list, 'go-', markeredgecolor='k', lw=2, label='训练集错误率') plt.xlabel('决策树深度', fontsize=13) plt.ylabel('错误率', fontsize=13) plt.legend(loc='lower left', fontsize=13) plt.title('决策树深度与过拟合', fontsize=15) plt.grid(b=True, ls=':', color='#606060') depth = np.arange(1, 15) err_train_list = [] err_test_list = [] clf = DecisionTreeClassifier(criterion='entropy') for d in depth: clf.set_params(max_depth=d) clf.fit(x_train, y_train) y_train_pred = clf.predict(x_train) err_train = 1-accuracy_score(y_train, y_train_pred) err_train_list.append(err_train) y_test_pred = clf.predict(x_test) err_test = 1-accuracy_score(y_test, y_test_pred) err_test_list.append(err_test) print(d, '测试集错误率:%.2f%%' % (100 * err_test)) plt.figure(facecolor='w') plt.plot(depth, err_test_list, 'ro-', markeredgecolor='k', lw=2, label='测试集错误率') plt.plot(depth, err_train_list, 'go-', markeredgecolor='k', lw=2, label='训练集错误率') plt.xlabel('决策树深度', fontsize=13) plt.ylabel('错误率', fontsize=13) plt.legend(loc='lower left', fontsize=13) plt.title('决策树深度与过拟合', fontsize=15) plt.grid(b=True, ls=':', color='#606060') plt.show()

import scipy.io as sio from sklearn import svm import numpy as np import matplotlib.pyplot as plt data=sio.loadmat('AllData') labels=sio.loadmat('label') print(data) class1 = 0 class2 = 1 idx1 = np.where(labels['label']==class1)[0] idx2 = np.where(labels['label']==class2)[0] X1 = data['B007FFT0'] X2 = data['B014FFT0'] Y1 = labels['label'][idx1].reshape(-1, 1) Y2 = labels['label'][idx2].reshape(-1, 1) ## 随机选取训练数据和测试数据 np.random.shuffle(X1) np.random.shuffle(X2) # Xtrain = np.vstack((X1[:200,:], X2[:200,:])) # Xtest = np.vstack((X1[200:300,:], X2[200:300,:])) # Ytrain = np.vstack((Y1[:200,:], Y2[:200,:])) # Ytest = np.vstack((Y1[200:300,:], Y2[200:300,:])) # class1=data['B007FFT0'][0:1000, :] # class2=data['B014FFT0'][0:1000, :] train_data=np.vstack((X1[0:200, :],X2[0:200, :])) test_data=np.vstack((X1[200:300, :],X2[200:300, :])) train_labels=np.vstack((Y1[:200,:], Y2[:200,:])) test_labels=np.vstack((Y1[200:300,:], Y2[200:300,:])) ## 训练SVM模型 clf=svm.SVC(kernel='linear', C=1000) clf.fit(train_data,train_labels.reshape(-1)) ## 用测试数据测试模型准确率 train_accuracy = clf.score(train_data, train_labels) test_accuracy = clf.score(test_data, test_labels) # test_pred=clf.predict(test_data) # accuracy=np.mean(test_pred==test_labels) # print("分类准确率为:{:.2F}%".fromat(accuracy*100)) x_min,x_max=test_data[:,0].min()-1,test_data[:,0].max()+1 y_min,y_max=test_data[:,1].min()-1,test_data[:,1].max()+1 xx,yy=np.meshgrid(np.arange(x_min,x_max,0.02),np.arange(y_min,y_max,0.02)) # 生成一个由xx和yy组成的网格 # X, Y = np.meshgrid(xx, yy) # 将网格展平成一个二维数组xy xy = np.vstack([xx.ravel(), yy.ravel()]).T # Z = clf.decision_function(xy).reshape(xx.shape) # z=clf.predict(np.c_[xx.ravel(),yy.ravel()]) z=xy.reshape(xx.shape) plt.pcolormesh(xx.shape) plt.xlim(xx.min(),xx.max()) plt.ylim(yy.min(),yy.max()) plt.xtickes(()) plt.ytickes(()) # # 画出分界线 # axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) # axis.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,linewidth=1, facecolors='none') plt.scatter(test_data[:,0],test_data[:1],c=test_labels,cmap=plt.cm.Paired) plt.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=80,facecolors='none',linewidths=1.5,edgecolors='k') plt.show()处理一下代码出错问题

大家在看

recommend-type

初等数论及其应用-第五版-华章-Kenneth.H.Rosen

初等数论及其应用-第五版-华章-Kenneth.H.Rosen
recommend-type

Toolbox使用说明.pdf

Toolbox 是快思聪公司新近推出的一款集成多种调试功能于一体的工具软件,它可以实现多种硬件检 测, 调试功能。完全可替代 Viewport 实现相应的功能。它提供了有 Text Console, SMW Program Tree, Network Device Tree, Script Manager, System Info, File Manager, Network Analyzer, Video Test Pattern 多个 检测调试工具, 其中 Text Console 主要执行基于文本编辑的命令; SMW Program Tree 主要罗列出相应 Simpl Windows 程序中设计到的相关快思聪设备, 并可对显示出的相关设备进行效验, 更新 Firmware, 上传 Project 等操作; Network Device Tree 主要使用于显示检测连接到 Cresnet 网络上相关设备, 可对网络上设备进行 ID 设置,侦测设备线路情况; Script Manager 主要用于运行脚本命令; System Info 则用于显示联机的控制系统 软硬件信息,也可对相应信息进行修改,刷新; File Manager 显示控制系统主机内存文件系统信息,可进行 修改,建立等管理操作; Video Test Pattern 则用于产生一个测试图调较屏幕显示; Network Analyzer 用于检 测连接到 Cresnet 网络上所有设备的通信线路情况。以上大致介绍了 Toolbox 中各工具软件的用途,下面将 分别讲述一下各工具的实际用法
recommend-type

基于plc自动门控制的设计毕业论文正稿.doc

基于plc自动门控制的设计毕业论文正稿.doc
recommend-type

MariaDB Galera Cluster 集群配置(MariaDB5.5.63亲测可用)

搭建MariaDB数据库集群,适用于MariaDB10.1及以下版本,因网上配置MariaDB集群教程所用版本均在10.2及以上,故出一个10.1以下版本配置教程
recommend-type

ChinaTest2013-测试人的能力和发展-杨晓慧

测试人的能力和发展-杨晓慧(华为)--ChinaTest2013大会主题演讲PPT。

最新推荐

recommend-type

解决python中显示图片的plt.imshow plt.show()内存泄漏问题

在描述的场景中,如果在循环中使用`plt.imshow()`和`plt.show()`显示批量图片,每次迭代都会创建新的图像窗口,并且旧的窗口不会被正确关闭,从而导致内存占用持续增加。为了解决这个问题,可以采取以下策略: 1. *...
recommend-type

matplotlib 曲线图 和 折线图 plt.plot()实例

在Python的可视化库matplotlib中,`plt.plot()`函数是用于绘制曲线图和折线图的主要工具。本实例展示了如何利用这个函数创建具有不同特性的图形。以下是对matplotlib中曲线图和折线图的理解以及`plt.plot()`的具体...
recommend-type

STM32之光敏电阻模拟路灯自动开关灯代码固件

这是一个STM32模拟天黑天亮自动开关灯代码固件,使用了0.96寸OLED屏幕显示文字,例程亲测可用,视频示例可B站搜索 285902929
recommend-type

PHP在线工具箱源码站长引流+在线工具箱源码+多款有趣的在线工具+一键安装

PHP在线工具箱源码站长引流+在线工具箱源码+多款有趣的在线工具+一键安装 测试环境:nginx+php5.6+mysql5.5 安装说明:上传后访问安装即可
recommend-type

PageNow大数据可视化开发平台-开源版,基于SprigBoot+Vue构建的数据可视化开发平台,灵活的拖拽式布局、支持多种数据源、丰富的通用组件.zip

PageNow大数据可视化开发平台_开源版,基于SprigBoot+Vue构建的数据可视化开发平台,灵活的拖拽式布局、支持多种数据源、丰富的通用组件PageNow-基础开源版(基于SpringBoot+Vue构建的数据可视化开发平台)介绍基于SprigBoot+Vue构建的数据可视化开发平台,灵活的拖拽式布局、丰富的通用组件,帮助您快速构建与迭代数据大屏页面。基础开源版仅作为交流学习使用,基础开源版将于2021年3月1日开始维护正式更新。如需购买功能更加完善且完善的企业版,请前往官网进行查看并在线体验企业版。官方网站http://pagenow.cn内容结构服务器邮政程序源码web前端主程序源码(基于Vue-cli3.0为基础构建的项目结构)总体架构选择1、 SpringBoot 主架构框架2、 决赛 基于Db的数据库操作3、 德鲁伊 数据库连接池4、 Swagger2 接口测试框架5、 Maven 项目建设管理前端架构型1、 vue mvvm 框架2、 vue-router 路由管理3、 vuex 状态管理4、 axios HTTP
recommend-type

PowerShell控制WVD录像机技术应用

资源摘要信息:"录像机" 标题: "录像机" 可能指代了两种含义,一种是传统的录像设备,另一种是指计算机上的录像软件或程序。在IT领域,通常我们指的是后者,即录像机软件。随着技术的发展,现代的录像机软件可以录制屏幕活动、视频会议、网络课程等。这类软件多数具备高效率的视频编码、画面捕捉、音视频同步等功能,以满足不同的应用场景需求。 描述: "录像机" 这一描述相对简单,没有提供具体的功能细节或使用场景。但是,根据这个描述我们可以推测文档涉及的是关于如何操作录像机,或者如何使用录像机软件的知识。这可能包括录像机软件的安装、配置、使用方法、常见问题排查等信息。 标签: "PowerShell" 通常指的是微软公司开发的一种任务自动化和配置管理框架,它包含了一个命令行壳层和脚本语言。由于标签为PowerShell,我们可以推断该文档可能会涉及到使用PowerShell脚本来操作或管理录像机软件的过程。PowerShell可以用来执行各种任务,包括但不限于启动或停止录像、自动化录像任务、从录像机获取系统状态、配置系统设置等。 压缩包子文件的文件名称列表: WVD-main 这部分信息暗示了文档可能与微软的Windows虚拟桌面(Windows Virtual Desktop,简称WVD)相关。Windows虚拟桌面是一个桌面虚拟化服务,它允许用户在云端访问一个虚拟化的Windows环境。文件名中的“main”可能表示这是一个主文件或主目录,它可能是用于配置、管理或与WVD相关的录像机软件。在这种情况下,文档可能包含如何使用PowerShell脚本与WVD进行交互,例如记录用户在WVD环境中的活动,监控和记录虚拟机状态等。 基于以上信息,我们可以进一步推断知识点可能包括: 1. 录像机软件的基本功能和使用场景。 2. 录像机软件的安装和配置过程。 3. 录像机软件的高级功能,如自定义录像设置、自动化任务、音视频编辑等。 4. PowerShell脚本的基础知识,包括如何编写简单和复杂的脚本。 5. 如何利用PowerShell管理录像机软件,实现自动化控制和监控录像过程。 6. Windows虚拟桌面(WVD)的基本概念和使用方法。 7. 如何在WVD环境中集成录像功能,以及如何使用PowerShell进行相关配置和管理。 8. 录像数据的处理和存储,包括录像文件的格式、转码、备份和恢复等。 9. 录像机软件在企业环境中应用的策略和最佳实践。 10. 常见问题诊断和解决方法,以及如何使用PowerShell脚本来应对录像机软件出现的问题。 这个知识点总结覆盖了从基础操作到高级管理的多个方面,旨在为读者提供一个全面的录像机软件使用和管理的框架。通过这些知识点,IT专业人员可以更有效地部署、操作和维护录像机系统,确保录像机软件能够满足各种业务需求。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Honeywell打印机驱动提升秘诀:从基础到高级配置的全方位解析

![HoneywellPrint_DLL_UM_CN.pdf](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190425160011/Anonymous-Types-in-C-1024x540.png) # 摘要 本文针对Honeywell打印机驱动的安装、配置、高级功能配置、故障诊断与优化以及安全与合规性进行了全面的介绍。首先概述了Honeywell打印机驱动的基础知识,随后详细阐述了驱动安装流程、基础打印设置及高级功能的实现。接着,文中探讨了打印机驱动在日常使用中可能遇到的常见问题及其解决方法,并提出了一系列打印性能优
recommend-type

Python输入三个数 a,b,c。判断能否以它们为三个边长构成直角三角形。若能,输出 YES,否则 输出NO。

在Python中,我们可以利用勾股定理来判断三个数a、b和c是否可以作为直角三角形的边长。如果满足a² + b² = c²,则这是一组直角三角形的三边;反之则不是。以下是一个简单的函数实现: ```python def is_right_triangle(a, b, c): if a**2 + b**2 == c**2 or a**2 + c**2 == b**2 or b**2 + c**2 == a**2: # 三种情况考虑,因为两边之和等于第三边的情况不属于常规直角三角形 return "YES" else: return "NO"
recommend-type

探索杂货店后端技术与JavaScript应用

资源摘要信息:"杂货店后端开发项目使用了JavaScript技术。" 在当今的软件开发领域,使用JavaScript来构建杂货店后端系统是一个非常普遍的做法。JavaScript不仅在前端开发中占据主导地位,其在Node.js的推动下,后端开发中也扮演着至关重要的角色。Node.js是一个能够使用JavaScript语言运行在服务器端的平台,它使得开发者能够使用熟悉的一门语言来开发整个Web应用程序。 后端开发是构建杂货店应用系统的核心部分,它主要负责处理应用逻辑、与数据库交互以及确保网络请求的正确响应。后端系统通常包含服务器、应用以及数据库这三个主要组件。 在开发杂货店后端时,我们可能会涉及到以下几个关键的知识点: 1. Node.js的环境搭建:首先需要在开发机器上安装Node.js环境。这包括npm(Node包管理器)和Node.js的运行时。npm用于管理项目依赖,比如各种中间件、数据库驱动等。 2. 框架选择:开发后端时,一个常见的选择是使用Express框架。Express是一个灵活的Node.js Web应用框架,提供了一系列强大的特性来开发Web和移动应用。它简化了路由、HTTP请求处理、中间件等功能的使用。 3. 数据库操作:根据项目的具体需求,选择合适的数据库系统(例如MongoDB、MySQL、PostgreSQL等)来进行数据的存储和管理。在JavaScript环境中,数据库操作通常会依赖于相应的Node.js驱动或ORM(对象关系映射)工具,如Mongoose用于MongoDB。 4. RESTful API设计:构建一个符合REST原则的API接口,可以让前端开发者更加方便地与后端进行数据交互。RESTful API是一种开发Web服务的架构风格,它利用HTTP协议的特性,使得Web服务能够使用统一的接口来处理资源。 5. 身份验证和授权:在杂货店后端系统中,管理用户账户和控制访问权限是非常重要的。这通常需要实现一些身份验证机制,如JWT(JSON Web Tokens)或OAuth,并根据用户角色和权限管理访问控制。 6. 错误处理和日志记录:为了保证系统的稳定性和可靠性,需要实现完善的错误处理机制和日志记录系统。这能帮助开发者快速定位问题,以及分析系统运行状况。 7. 容器化与部署:随着Docker等容器化技术的普及,越来越多的开发团队选择将应用程序容器化部署。容器化可以确保应用在不同的环境和系统中具有一致的行为,极大地简化了部署过程。 8. 性能优化:当后端应用处理大量数据或高并发请求时,性能优化是一个不可忽视的问题。这可能包括数据库查询优化、缓存策略的引入、代码层面的优化等等。 通过以上知识点的综合运用,我们可以构建出一个功能丰富、性能优化良好并且可扩展性强的杂货店后端系统。当然,在实际开发过程中,还需要充分考虑安全性、可维护性和测试等因素。