iteration += 1 if iteration % 5000: paddle.save(generator.state_dict(), './model.pdparams')
时间: 2024-02-10 19:50:41 浏览: 81
这段代码是一个训练模型时的代码片段,其中:
- `iteration` 表示当前训练迭代次数;
- `+= 1` 表示每次迭代后将 `iteration` 值加 1;
- `if iteration % 5000:` 表示如果 `iteration` 值除以 5000 的余数为 0,则执行下面的语句;
- `paddle.save(generator.state_dict(), './model.pdparams')` 表示将当前的生成器(`generator`)模型参数保存到指定路径下的文件中。
因此,这段代码的作用是每训练 5000 次就保存一次生成器模型参数。
相关问题
# seeds = [2222, 5, 4, 2, 209, 4096, 2048, 1024, 2015, 1015, 820]#11 seeds = [2]#2 num_model_seed = 1 oof = np.zeros(X_train.shape[0]) prediction = np.zeros(X_test.shape[0]) feat_imp_df = pd.DataFrame({'feats': feature_name, 'imp': 0}) parameters = { 'learning_rate': 0.008, 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 63, 'feature_fraction': 0.8,#原来0.8 'bagging_fraction': 0.8, 'bagging_freq': 5,#5 'seed': 2, 'bagging_seed': 1, 'feature_fraction_seed': 7, 'min_data_in_leaf': 20, 'verbose': -1, 'n_jobs':4 } fold = 5 for model_seed in range(num_model_seed): print(seeds[model_seed],"--------------------------------------------------------------------------------------------") oof_cat = np.zeros(X_train.shape[0]) prediction_cat = np.zeros(X_test.shape[0]) skf = StratifiedKFold(n_splits=fold, random_state=seeds[model_seed], shuffle=True) for index, (train_index, test_index) in enumerate(skf.split(X_train, y)): train_x, test_x, train_y, test_y = X_train[feature_name].iloc[train_index], X_train[feature_name].iloc[test_index], y.iloc[train_index], y.iloc[test_index] dtrain = lgb.Dataset(train_x, label=train_y) dval = lgb.Dataset(test_x, label=test_y) lgb_model = lgb.train( parameters, dtrain, num_boost_round=10000, valid_sets=[dval], early_stopping_rounds=100, verbose_eval=100, ) oof_cat[test_index] += lgb_model.predict(test_x,num_iteration=lgb_model.best_iteration) prediction_cat += lgb_model.predict(X_test,num_iteration=lgb_model.best_iteration) / fold feat_imp_df['imp'] += lgb_model.feature_importance() del train_x del test_x del train_y del test_y del lgb_model oof += oof_cat / num_model_seed prediction += prediction_cat / num_model_seed gc.collect()解释上面的python代码
这段 Python 代码实现了一个基于 LightGBM 模型的交叉验证和预测过程。其中的主要参数和步骤如下:
1. `seeds`: 随机数种子集合,用于交叉验证时的随机划分数据集。
2. `num_model_seed`: 随机数种子的数量,用于多次随机划分数据集并训练多个模型,以降低随机划分的影响。
3. `oof` 和 `prediction`: 用于存储交叉验证和预测结果的数组,分别表示 out-of-fold 和测试集的结果。
4. `parameters`: LightGBM 模型的超参数,包括学习率、树的数量、特征采样比例等等。
5. `fold`: 交叉验证的折数。
6. `StratifiedKFold`: 用于划分训练集和验证集的类,保证每个折中的正负样本比例相同。
7. `lgb.Dataset`: 用于将数据转换成 LightGBM 能够读取的数据格式。
8. `lgb.train`: 用于训练 LightGBM 模型,并在验证集上进行早停。
9. `feat_imp_df`: 用于存储特征重要性的 DataFrame。
10. `gc.collect()`: 用于清理内存,避免内存泄露。
这段代码的主要流程是:根据随机数种子集合和折数,进行多次交叉验证和训练,并将每个模型的 out-of-fold 结果和测试集结果进行平均,作为最终的预测结果。同时,每次训练都会记录特征重要性,最后将所有模型的特征重要性进行累加,以便后续分析特征的重要性。
根据前端传过来的前端传递过来的开始时间和结束时间参数 筛选创建时间在开始时间和结束时间区间的数据 修改后端写法def get_bugs_data(): api_url = "https://api.tapd.cn/bugs" api_headers = {"Authorization": "#", "content-type": "application/json"}iterations_url = "https:/"count_url ="https://at" params_count = {"status": "closed","workspace_id": 41571821, } # 发送请求,获取缺陷总数 response = requests.get(count_url, params=params_count, headers=api_headers) if response.status_code == 200: total_bug = response.json()total_count = total_bug['data']['count'] print(total_count) else: print("Error: Failed to retrieve count. Status code: ", response.status_code) start_time = request.get('start_time') end_time = request.get('end_time') start_time =datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') end_time = datetime.strptime(end_time, '%Y-%m-%d %H:%M:%S') bug_list = [] for i in range(1,total_count//200): params = {"limit": 200, "status": "closed", "workspace_id": 41571821, "page": i } response = requests.get(api_url, params=params, headers=api_headers) if response.status_code == 200: res = response.json() for bug_item in res['data']: if bug_item['Bug']['fixer'] and bug_item['Bug']['fixer'] in white_name:bug_data_dict = {"bug_title": bug_item['Bug']['title'], "bug_created": bug_item['Bug']['created'], "bug_fixer": bug_item['Bug']['fixer'], "bug_resolved": bug_item['Bug']['resolved'], "bug_url": f"https://www.tapd.cn/41571821/bugtrace/bugs/view?bug_id={bug_item['Bug']['id']}" } params_iteration = {"limit": 200, "workspace_id": 41571821, "id": bug_item['Bug']['iteration_id'] }response =requests.get(iterations_url, params=params_iteration, headers=api_headers)if response.status_code == 200: iterations = response.json() iteration_name = iterations['data'][0]['Iteration']['name'] bug_data_dict['iteration_name'] = iteration_name bug_list.append(bug_data_dict) else: print("Error: Failed to retrieve iterations. Status code: ", response.status_code) return {"code": 200, "msg": "成功", "data": bug_list}
可以将代码中的bug数据筛选部分修改如下:
```python
bug_list = []
for i in range(1, total_count//200 + 2):
params = {"limit": 200, "status": "closed", "workspace_id": 41571821, "page": i}
response = requests.get(api_url, params=params, headers=api_headers)
if response.status_code == 200:
res = response.json()
for bug_item in res['data']:
created_time = datetime.strptime(bug_item['Bug']['created'], '%Y-%m-%d %H:%M:%S')
if start_time <= created_time <= end_time:
if bug_item['Bug']['fixer'] and bug_item['Bug']['fixer'] in white_name:
bug_data_dict = {"bug_title": bug_item['Bug']['title'],
"bug_created": bug_item['Bug']['created'],
"bug_fixer": bug_item['Bug']['fixer'],
"bug_resolved": bug_item['Bug']['resolved'],
"bug_url": f"https://www.tapd.cn/41571821/bugtrace/bugs/view?bug_id={bug_item['Bug']['id']}"}
params_iteration = {"limit": 200, "workspace_id": 41571821, "id": bug_item['Bug']['iteration_id']}
response = requests.get(iterations_url, params=params_iteration, headers=api_headers)
if response.status_code == 200:
iterations = response.json()
iteration_name = iterations['data'][0]['Iteration']['name']
bug_data_dict['iteration_name'] = iteration_name
bug_list.append(bug_data_dict)
else:
print("Error: Failed to retrieve iterations. Status code: ", response.status_code)
else:
print("Error: Failed to retrieve bugs. Status code: ", response.status_code)
return {"code": 200, "msg": "成功", "data": bug_list}
```
在每个缺陷被处理时,将其创建时间转换为datetime对象,然后与开始时间和结束时间进行比较。如果创建时间在时间范围内,则将该缺陷加入到结果列表中。
阅读全文