train_loss_sum / len( train_iter.dataset)
时间: 2024-02-10 09:50:05 浏览: 105
This expression calculates the average training loss per data point in a given dataset.
Explanation:
- `train_loss_sum`: This is the sum of all training losses across all batches in the dataset.
- `len(train_iter.dataset)`: This is the total number of data points in the dataset.
- Dividing `train_loss_sum` by `len(train_iter.dataset)` gives us the average training loss per data point in the dataset.
For example, if `train_loss_sum` is 100 and `len(train_iter.dataset)` is 50, then the expression would evaluate to 2.0, indicating that the average training loss per data point is 2.0.
相关问题
编写pytorch代码,定义个lstm模型,定义个cpso优化算法,调用优化算法去优化模型,读取训练集trainset,计算在训练集上的损失,将最优的参数设置给模型,读取测试集testset,再测试集上测试模型,并输出测试损失,绘制测试集的预测值和实际值,计算测试集的均方根误差
好的,以下是代码实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import numpy as np
import matplotlib.pyplot as plt
# 定义LSTM模型
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, input):
lstm_out, _ = self.lstm(input.view(len(input), 1, -1))
output = self.linear(lstm_out.view(len(input), -1))
return output[-1]
# 定义CPSO优化算法
class CPSO:
def __init__(self, pop_size, dim, max_iter, c1=2, c2=2, w_min=0.4, w_max=0.9):
self.pop_size = pop_size
self.dim = dim
self.max_iter = max_iter
self.c1 = c1
self.c2 = c2
self.w_min = w_min
self.w_max = w_max
self.w = w_max
self.c = c1 + c2
self.x = torch.rand(pop_size, dim)
self.v = torch.rand(pop_size, dim)
self.pbest = self.x.clone().detach()
self.gbest = self.pbest[0]
def optimize(self, model, trainset):
# 适应值函数
def fitness_func(x):
with torch.no_grad():
for i, param in enumerate(model.parameters()):
param.data = x[i]
loss_func = nn.MSELoss()
loss = 0
for data, label in trainset:
output = model(data)
loss += loss_func(output, label)
return loss.item()
# 初始化粒子群
pbest_fit = [fitness_func(x) for x in self.x]
gbest_fit = min(pbest_fit)
gbest_idx = pbest_fit.index(gbest_fit)
self.gbest = self.pbest[gbest_idx]
# 开始迭代
for iter in range(self.max_iter):
r1 = torch.rand(self.pop_size, self.dim)
r2 = torch.rand(self.pop_size, self.dim)
self.v = self.w * self.v + self.c1 * r1 * (self.pbest - self.x) + self.c2 * r2 * (self.gbest - self.x)
self.x = self.x + self.v
self.x = torch.clamp(self.x, 0, 1) # 限制参数范围
fit = [fitness_func(x) for x in self.x]
for i in range(self.pop_size):
if fit[i] < pbest_fit[i]:
self.pbest[i] = self.x[i]
pbest_fit[i] = fit[i]
if min(pbest_fit) < gbest_fit:
gbest_fit = min(pbest_fit)
gbest_idx = pbest_fit.index(gbest_fit)
self.gbest = self.pbest[gbest_idx]
self.w = self.w_max - (self.w_max - self.w_min) * iter / self.max_iter
# 将最优的参数设置给模型
with torch.no_grad():
for i, param in enumerate(model.parameters()):
param.data = self.gbest[i]
# 定义数据集
class MyDataset(Dataset):
def __init__(self, data, label):
self.data = torch.tensor(data, dtype=torch.float)
self.label = torch.tensor(label, dtype=torch.float)
def __getitem__(self, index):
return self.data[index], self.label[index]
def __len__(self):
return len(self.data)
# 读取数据集
train_data = np.load('train_data.npy')
train_label = np.load('train_label.npy')
test_data = np.load('test_data.npy')
test_label = np.load('test_label.npy')
trainset = MyDataset(train_data, train_label)
testset = MyDataset(test_data, test_label)
# 定义模型和优化算法
model = LSTM(1, 16, 1)
cpso = CPSO(10, sum(p.numel() for p in model.parameters()), 100)
# 使用CPSO优化模型
cpso.optimize(model, trainset)
# 在训练集上计算损失
with torch.no_grad():
loss_func = nn.MSELoss()
loss = 0
for data, label in trainset:
output = model(data)
loss += loss_func(output, label)
print('训练集损失:', loss.item())
# 在测试集上测试模型
with torch.no_grad():
loss_func = nn.MSELoss()
loss = 0
predict_list = []
label_list = []
for data, label in testset:
output = model(data)
loss += loss_func(output, label)
predict_list.append(output.item())
label_list.append(label.item())
print('测试集损失:', loss.item())
# 绘制测试集的预测值和实际值
plt.plot(label_list)
plt.plot(predict_list)
plt.legend(['label', 'predict'])
plt.show()
# 计算测试集的均方根误差
rmse = np.sqrt(np.mean((np.array(label_list) - np.array(predict_list)) ** 2))
print('测试集均方根误差:', rmse)
```
需要注意的是,这段代码中的数据集格式为numpy数组,如果数据集为其他格式,需要进行相应的转换。另外,在实际使用中,可能需要根据情况对模型结构、优化算法等进行调整。
基于pytorch的rnn_lstm模型代码
好的,下面是一个基于PyTorch框架的RNN-LSTM模型的代码示例,用于实现MNIST手写数字分类:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader
# 准备数据集
train_dataset = MNIST(root='./data', train=True, transform=ToTensor(), download=True)
test_dataset = MNIST(root='./data', train=False, transform=ToTensor())
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False)
# 构建模型
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)).cuda()
c0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)).cuda()
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
model = RNN(28, 128, 2, 10).cuda()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, 28, 28)).cuda()
labels = Variable(labels).cuda()
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' % (epoch+1, num_epochs, i+1, len(train_dataset)//128, loss.data[0]))
# 评估模型
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28, 28)).cuda()
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted.cpu() == labels).sum()
print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
```
该模型包含一个LSTM层和一个全连接层,其中LSTM层的输入形状为(28,28),表示每个手写数字图像的像素为28x28。在模型训练时,使用交叉熵作为损失函数,Adam作为优化器。在训练过程中,使用128个样本的批量训练,共进行10个epoch的训练。最后输出测试集上的准确率。需要注意的是,该代码示例使用了GPU进行训练,如果没有GPU可以将`.cuda()`去掉。
阅读全文