实现最小生成树计算的Prim算法和Kruskal算法python
时间: 2023-11-18 08:04:27 浏览: 85
Prim算法实现:
```python
import heapq
def prim(graph, start):
visited = set([start])
edges = [
(cost, start, to)
for to, cost in graph[start].items()
]
heapq.heapify(edges)
while edges:
cost, frm, to = heapq.heappop(edges)
if to not in visited:
visited.add(to)
yield frm, to, cost
for to_next, cost in graph[to].items():
if to_next not in visited:
heapq.heappush(edges, (cost, to, to_next))
```
Kruskal算法实现:
```python
def kruskal(graph):
parent = {}
rank = {}
edges = []
result = []
for frm in graph:
for to, cost in graph[frm].items():
edges.append((cost, frm, to))
edges.sort()
for node in graph:
parent[node] = node
rank[node] = 0
def find(node):
if parent[node] != node:
parent[node] = find(parent[node])
return parent[node]
def union(node1, node2):
root1 = find(node1)
root2 = find(node2)
if root1 != root2:
if rank[root1] > rank[root2]:
parent[root2] = root1
else:
parent[root1] = root2
if rank[root1] == rank[root2]:
rank[root2] += 1
for cost, frm, to in edges:
if find(frm) != find(to):
union(frm, to)
result.append((frm, to, cost))
return result
```
这两段代码中,我们假设输入的图是一个字典,其键为节点,值是该节点到达其他节点的边的权重,也是一个字典。输出是一个生成树,以元组列表的形式表示,每个元组由两个节点和它们之间的距离组成。
阅读全文