matlabt哈夫曼编码
时间: 2023-11-15 19:56:45 浏览: 195
好的,关于 Matlab 中的哈夫曼编码,我可以为您提供一些基本信息。哈夫曼编码是一种可变长度编码,它通过将出现频率较高的字符用较短的编码表示,从而实现对信息的压缩。在 Matlab 中,可以使用 `huffmandict` 函数生成哈夫曼编码字典,使用 `huffmanenco` 函数对数据进行编码,使用 `huffmandeco` 函数对数据进行解码。您可以参考 Matlab 的官方文档了解更多细节。
相关问题
matlab哈夫曼编码 c语言
以下是C语言和Matlab语言实现哈夫曼编码的示例:
C语言实现:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_TREE_HT 100
struct MinHeapNode {
char data;
unsigned freq;
struct MinHeapNode *left, *right;
};
struct MinHeap {
unsigned size;
unsigned capacity;
struct MinHeapNode **array;
};
struct MinHeapNode *newNode(char data, unsigned freq) {
struct MinHeapNode *temp = (struct MinHeapNode *)malloc(sizeof(struct MinHeapNode));
temp->left = temp->right = NULL;
temp->data = data;
temp->freq = freq;
return temp;
}
struct MinHeap *createMinHeap(unsigned capacity) {
struct MinHeap *minHeap = (struct MinHeap *)malloc(sizeof(struct MinHeap));
minHeap->size = 0;
minHeap->capacity = capacity;
minHeap->array = (struct MinHeapNode **)malloc(minHeap->capacity * sizeof(struct MinHeapNode *));
return minHeap;
}
void swapMinHeapNode(struct MinHeapNode **a, struct MinHeapNode **b) {
struct MinHeapNode *t = *a;
*a = *b;
*b = t;
}
void minHeapify(struct MinHeap *minHeap, int idx) {
int smallest = idx;
int left = 2 * idx + 1;
int right = 2 * idx + 2;
if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq)
smallest = left;
if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq)
smallest = right;
if (smallest != idx) {
swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);
minHeapify(minHeap, smallest);
}
}
int isSizeOne(struct MinHeap *minHeap) {
return (minHeap->size == 1);
}
struct MinHeapNode *extractMin(struct MinHeap *minHeap) {
struct MinHeapNode *temp = minHeap->array[0];
minHeap->array[0] = minHeap->array[minHeap->size - 1];
--minHeap->size;
minHeapify(minHeap, 0);
return temp;
}
void insertMinHeap(struct MinHeap *minHeap, struct MinHeapNode *minHeapNode) {
++minHeap->size;
int i = minHeap->size - 1;
while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) {
minHeap->array[i] = minHeap->array[(i - 1) / 2];
i = (i - 1) / 2;
}
minHeap->array[i] = minHeapNode;
}
void buildMinHeap(struct MinHeap *minHeap) {
int n = minHeap->size - 1;
int i;
for (i = (n - 1) / 2; i >= 0; --i)
minHeapify(minHeap, i);
}
void printArr(int arr[], int n) {
int i;
for (i = 0; i < n; ++i)
printf("%d", arr[i]);
printf("\n");
}
int isLeaf(struct MinHeapNode *root) {
return !(root->left) && !(root->right);
}
struct MinHeap *createAndBuildMinHeap(char data[], int freq[], int size) {
struct MinHeap *minHeap = createMinHeap(size);
for (int i = 0; i < size; ++i)
minHeap->array[i] = newNode(data[i], freq[i]);
minHeap->size = size;
buildMinHeap(minHeap);
return minHeap;
}
struct MinHeapNode *buildHuffmanTree(char data[], int freq[], int size) {
struct MinHeapNode *left, *right, *top;
struct MinHeap *minHeap = createAndBuildMinHeap(data, freq, size);
while (!isSizeOne(minHeap)) {
left = extractMin(minHeap);
right = extractMin(minHeap);
top = newNode('$', left->freq + right->freq);
top->left = left;
top->right = right;
insertMinHeap(minHeap, top);
}
return extractMin(minHeap);
}
void printCodes(struct MinHeapNode *root, int arr[], int top) {
if (root->left) {
arr[top] = 0;
printCodes(root->left, arr, top + 1);
}
if (root->right) {
arr[top] = 1;
printCodes(root->right, arr, top + 1);
}
if (isLeaf(root)) {
printf("%c: ", root->data);
printArr(arr, top);
}
}
void HuffmanCodes(char data[], int freq[], int size) {
struct MinHeapNode *root = buildHuffmanTree(data, freq, size);
int arr[MAX_TREE_HT], top = 0;
printCodes(root, arr, top);
}
int main() {
char arr[] = {'a', 'b', 'c', 'd', 'e', 'f'};
int freq[] = {5, 9, 12, 13, 16, 45};
int size = sizeof(arr) / sizeof(arr[0]);
HuffmanCodes(arr, freq, size);
return 0;
}
```
Matlab实现:
```matlab
function [code, dict] = huffman(p)
% HUFFMAN Create a variable-length code using the Huffman algorithm.
% [CODE,DICT] = HUFFMAN(P) returns a Huffman code as a cell array of
% strings and its corresponding dictionary as a containers.Map object.
%
% P is a vector of probabilities that correspond to the alphabet of
% symbols to be encoded. The probabilities must sum to 1.
%
% CODE is a cell array of strings that represents the variable-length
% code for each symbol in the alphabet. The order of the symbols in
% CODE corresponds to the order of the probabilities in P.
%
% DICT is a containers.Map object that maps each symbol in the alphabet
% to its corresponding variable-length code.
%
% Example:
% p = [0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125];
% [code, dict] = huffman(p);
%
% See also HUFFMANDICT, HUFFMANENCODE, HUFFMANDECODE, CONTAINERS.MAP.
% Check input arguments
narginchk(1, 1);
validateattributes(p, {'numeric'}, {'vector', 'nonnegative', '<=', 1, 'nonempty', 'real'}, mfilename, 'P', 1);
% Create a dictionary that maps each symbol to its probability
dict = containers.Map(1:numel(p), num2cell(p));
% Create a priority queue of tree nodes
q = priorityQueue();
for i = 1:numel(p)
q.insert(treeNode(i, p(i)));
end
% Build the Huffman tree
while q.size() > 1
% Remove the two nodes with the lowest probabilities
node1 = q.remove();
node2 = q.remove();
% Create a new node that is the parent of the two nodes
parent = treeNode([node1.symbols node2.symbols], node1.probability + node2.probability);
parent.left = node1;
parent.right = node2;
% Add the new node to the priority queue
q.insert(parent);
end
% Traverse the tree to get the variable-length codes
code = cell(size(p));
root = q.remove();
traverse(root, '');
% Nested functions
function traverse(node, prefix)
if ~isempty(node.symbols)
% Leaf node
code(node.symbols) = {prefix};
else
% Non-leaf node
traverse(node.left, [prefix '0']);
traverse(node.right, [prefix '1']);
end
end
end
function q = priorityQueue()
% PRIORITYQUEUE Create a priority queue.
% Q = PRIORITYQUEUE() returns an empty priority queue.
%
% Example:
% q = priorityQueue();
% q.insert(1);
% q.insert(2);
% q.insert(3);
% q.remove() % Returns 1
% q.remove() % Returns 2
% q.remove() % Returns 3
%
% See also HEAPQ.
% Properties
q.heap = {};
% Methods
q.insert = @insert;
q.remove = @remove;
q.size = @size;
% Nested functions
function insert(item)
% Insert an item into the priority queue
q.heap{end+1} = item;
heapq(q.heap, numel(q.heap), 'ascend');
end
function item = remove()
% Remove and return the item with the highest priority
if isempty(q.heap)
error('Priority queue is empty');
end
item = q.heap{1};
q.heap(1) = [];
if ~isempty(q.heap)
heapq(q.heap, 1, 'descend');
end
end
function n = size()
% Return the number of items in the priority queue
n = numel(q.heap);
end
end
function node = treeNode(symbols, probability)
% TREENODE Create a tree node.
% NODE = TREENODE(SYMBOLS,PROBABILITY) returns a tree node with the
% specified symbols and probability.
%
% SYMBOLS is a vector of indices that correspond to the symbols in the
% alphabet to be encoded.
%
% PROBABILITY is the probability of the node.
%
% Example:
% node = treeNode([1 2], 0.25);
%
% See also HUFFMAN.
% Properties
node.symbols = symbols;
node.probability = probability;
node.left = [];
node.right = [];
end
function heapq(heap, i, order)
% HEAPQ Heapify a binary tree.
% HEAPQ(HEAP,I,ORDER) heapifies the binary tree rooted at index I in
% the specified order. ORDER can be 'ascend' or 'descend'.
%
% Example:
% heap = {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5};
% heapq(heap, 1, 'ascend');
% heap % Returns {1, 1, 2, 3, 3, 9, 4, 6, 5, 5, 5}
%
% See also HEAPPUSH, HEAPPUSHPOP, HEAPREPLACE.
% Get the indices of the left and right children
left = 2 * i;
right = 2 * i + 1;
% Find the index of the smallest or largest element
if left <= numel(heap) && compare(heap{left}, heap{i}, order)
smallest_or_largest = left;
else
smallest_or_largest = i;
end
if right <= numel(heap) && compare(heap{right}, heap{smallest_or_largest}, order)
smallest_or_largest = right;
end
% Swap the current element with the smallest or largest element
if smallest_or_largest ~= i
temp = heap{i};
heap{i} = heap{smallest_or_largest};
heap{smallest_or_largest} = temp;
heapq(heap, smallest_or_largest, order);
end
end
function result = compare(a, b, order)
% COMPARE Compare two elements.
% RESULT = COMPARE(A,B,ORDER) compares the elements A and B in the
% specified order. ORDER can be 'ascend' or 'descend'.
%
% Example:
% compare(1, 2, 'ascend') % Returns true
% compare(1, 2, 'descend') % Returns false
%
% See also HEAPQ.
if strcmp(order, 'ascend')
result = a < b;
else
result = a > b;
end
end
```
已知信源各符号的概率分布,对该信源进行哈夫曼编码。要求: (1)检验输入信源概率的正确性; (2)按各符号概率值对信源符号进行降序排列; (3)设计哈夫曼编码的数据结构与算法,求出哈夫曼编码的码子; (4)计算平均码长、信源熵和编码效率; (5)记录实验结果。用MATLAB写出代码
以下是MATLAB代码实现:
```matlab
% 输入信源概率分布
p = input('请输入信源各符号的概率分布(用空格分隔):');
% 检验输入信源概率的正确性
if sum(p) ~= 1
error('输入的概率之和不等于1!');
end
% 符号个数
n = length(p);
% 符号降序排列
[~, idx] = sort(p, 'descend');
% 哈夫曼编码初始化
code = cell(n, 1);
% 哈夫曼编码构建
for i = 1:n-1
% 取出概率最小的两个符号
minp = p(idx(end-1:end));
% 取出它们在哈夫曼编码中的码字
mincode = code(idx(end-1:end));
% 计算它们的合并概率
newp = sum(minp);
% 计算新符号的码字
newcode = strcat(mincode{1}, '0', mincode{2}, '1');
% 将合并后的符号和码字插入原数组
p(idx(end-1:end)) = [];
code(idx(end-1:end)) = [];
p = [p; newp];
code = [code; {newcode}];
% 对概率进行降序排列
[~, idx] = sort(p, 'descend');
end
% 输出哈夫曼编码
fprintf('信源符号\t概率\t\t编码\n');
for i = 1:n
fprintf('%d\t\t%.4f\t\t%s\n', i, p(i), code{i});
end
% 计算平均码长
L = 0;
for i = 1:n
L = L + p(i) * length(code{i});
end
% 计算信源熵
H = 0;
for i = 1:n
H = H - p(i) * log2(p(i));
end
% 计算编码效率
eta = H / L;
% 输出实验结果
fprintf('平均码长:%.4f\n', L);
fprintf('信源熵:%.4f\n', H);
fprintf('编码效率:%.4f\n', eta);
```
注意,这段代码只是一个简单的实现,没有考虑到输入概率分布中出现非法值的情况,也没有进行错误处理。在实际应用中,需要进行更加严格的输入检验和错误处理。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![txt](https://img-home.csdnimg.cn/images/20241231045021.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![txt](https://img-home.csdnimg.cn/images/20241231045021.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)