解释代码 max_abs_scaler = preprocessing.MaxAbsScaler() x_train_maxsbs = max_abs_scaler.fit_transform(x) x_train_maxsbs

时间: 2023-05-28 11:01:45 浏览: 55
该代码用于对训练数据进行特征缩放,其中使用了MaxAbsScaler方法对数据特征进行缩放。使用MaxAbsScaler方法的目的是将数据特征缩放到[-1,1]之间,即通过除以每个特征的最大值来将数据规范化。x_train_maxsbs表示缩放后的训练数据。其中,fit_transform方法用于对训练数据进行fit和transform操作,fit操作用于计算训练数据每个特征的最大值,transform操作则是对训练数据进行缩放。
相关问题

plt.boxplot(x=train_data.values,labels=train_data.columns) 3 plt.hlines([-7.5, 7.5], 0, 40, colors='r') 4 plt.show() 5 6 train_data = train_data[train_data['V9']>-7.5] 7 train_data.describe() 8 9 from sklearn import preprocessing 10 11 features_columns = [col for col in train_data.columns if col not in ['target']] 12 13 min_max_scaler = preprocessing.MinMaxScaler() 14 15 min_max_scaler = min_max_scaler.fit(train_data[features_columns]) 16 17 train_data_scaler = min_max_scaler.transform(train_data[features_columns]) 18 test_data_scaler = min_max_scaler.transform(test_data[features_columns]) 19 20 train_data_scaler = pd.DataFrame(train_data_scaler) 21 train_data_scaler.columns = features_columns 22 23 test_data_scaler = pd.DataFrame(test_data_scaler) 24 test_data_scaler.columns = features_columns 25 26 train_data_scaler['target'] = train_data['target'] 27 28 train_data 29 30 mcorr=mcorr.abs() 31 numerical_corr=mcorr[mcorr['target']>0.1]['target'] 32 print(numerical_corr.sort_values(ascending=False))解释每一行代码的意思

好的,我来解释每一行代码的意思: 1. `plt.boxplot(x=train_data.values,labels=train_data.columns)`: 绘制箱线图,用于检测是否存在异常值; 2. `plt.hlines([-7.5, 7.5], 0, 40, colors='r')`: 在箱线图上绘制两条水平线,用于标记异常值的阈值; 3. `train_data = train_data[train_data['V9']>-7.5]`: 去除训练数据中V9列中小于-7.5的异常值; 4. `train_data.describe()`: 输出训练数据的统计信息,包括均值、标准差、最小值、最大值等; 5. `from sklearn import preprocessing`: 导入preprocessing模块,用于数据预处理; 6. `features_columns = [col for col in train_data.columns if col not in ['target']]`: 提取除了目标变量之外的特征列,存储在features_columns变量中; 7. `min_max_scaler = preprocessing.MinMaxScaler()`: 创建MinMaxScaler对象,用于对特征数据进行归一化处理; 8. `min_max_scaler = min_max_scaler.fit(train_data[features_columns])`: 对MinMaxScaler对象进行拟合,计算出归一化所需的最大值和最小值; 9. `train_data_scaler = min_max_scaler.transform(train_data[features_columns])`: 对训练数据的特征列进行归一化处理; 10. `test_data_scaler = min_max_scaler.transform(test_data[features_columns])`: 对测试数据的特征列进行归一化处理; 11. `train_data_scaler = pd.DataFrame(train_data_scaler)`: 将归一化后的训练数据特征列转换成DataFrame格式; 12. `train_data_scaler.columns = features_columns`: 给训练数据的特征列添加列名; 13. `test_data_scaler = pd.DataFrame(test_data_scaler)`: 将归一化后的测试数据特征列转换成DataFrame格式; 14. `test_data_scaler.columns = features_columns`: 给测试数据的特征列添加列名; 15. `train_data_scaler['target'] = train_data['target']`: 将训练数据的目标变量添加到归一化后的训练数据中; 16. `train_data`: 输出训练数据的内容; 17. `mcorr=mcorr.abs()`: 计算特征之间的相关性矩阵,并对矩阵中的元素取绝对值; 18. `numerical_corr=mcorr[mcorr['target']>0.1]['target']`: 筛选出与目标变量相关性大于0.1的特征; 19. `print(numerical_corr.sort_values(ascending=False))`: 输出筛选后的特征相关性,按照相关性大小降序排列; 20. `index0 = numerical_corr.sort_values(ascending=False).index`: 获取筛选后的特征名字,并存储在index0变量中; 21. `print(train_data_scaler[index0].corr('spearman'))`: 计算筛选后的特征之间的Spearman相关系数; 22. `new_numerical=['V0', 'V2', 'V3', 'V4', 'V5', 'V6', 'V10','V11', 'V13', 'V15', 'V16', 'V18', 'V19', 'V20', 'V22','V24','V30', 'V31', 'V37']`: 将相关性较高的特征名字存储在new_numerical变量中; 23. `X=np.matrix(train_data_scaler[new_numerical])`: 将训练数据中的new_numerical列转换为矩阵格式,存储在X变量中; 24. `VIF_list=[variance_inflation_factor(X, i) for i in range(X.shape[1])]`: 计算new_numerical列之间的VIF值,存储在VIF_list变量中; 25. `VIF_list`: 输出VIF_list变量的值; 26. `pca = PCA(n_components=0.9)`: 创建PCA对象,并设置保留90%的方差; 27. `new_train_pca_90 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])`: 对训练数据进行PCA降维,并保留90%的方差; 28. `new_test_pca_90 = pca.transform(test_data_scaler)`: 对测试数据进行PCA降维,并保留90%的方差; 29. `new_train_pca_90 = pd.DataFrame(new_train_pca_90)`: 将降维后的训练数据转换为DataFrame格式; 30. `new_test_pca_90 = pd.DataFrame(new_test_pca_90)`: 将降维后的测试数据转换为DataFrame格式; 31. `new_train_pca_90['target'] = train_data_scaler['target']`: 将训练数据的目标变量添加到降维后的训练数据中; 32. `new_train_pca_90.describe()`: 输出降维后的训练数据的统计信息,包括均值、标准差、最小值、最大值等。

1. 采用Python编程语言自己实现StandardScaler和MinMaxScaler这两种数据标准化方法,并用于乳腺癌数据的分类。 要求模型预测的准确率结果必须与以下sklearn的一样: from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split cancer = load_breast_cancer() X = cancer.data y = cancer.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.3) from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler scaler = StandardScaler() #scaler = MinMaxScaler() scaler.fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) from sklearn.linear_model import LogisticRegression logreg=LogisticRegression() logreg.fit(X_train_scaled, y_train) y_pred = logreg.predict(X_test_scaled) from sklearn.metrics import accuracy_score accuracy_score(y_test, y_pred)

好的,这是一个很好的问题!数据标准化是数据预处理中非常重要的一步,可以帮助我们更好地训练模型。下面是我为你提供的Python代码,可以自己实现StandardScaler和MinMaxScaler这两种数据标准化方法,并用于乳腺癌数据的分类。 ``` import numpy as np class StandardScaler: def __init__(self): self.mean_ = None self.std_ = None def fit(self, X): self.mean_ = np.mean(X, axis=0) self.std_ = np.std(X, axis=0) def transform(self, X): return (X - self.mean_) / self.std_ class MinMaxScaler: def __init__(self): self.min_ = None self.max_ = None def fit(self, X): self.min_ = np.min(X, axis=0) self.max_ = np.max(X, axis=0) def transform(self, X): return (X - self.min_) / (self.max_ - self.min_) # 加载乳腺癌数据 from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split cancer = load_breast_cancer() X = cancer.data y = cancer.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.3) # 使用自己实现的StandardScaler进行数据标准化 scaler = StandardScaler() scaler.fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) # 使用逻辑回归进行分类 from sklearn.linear_model import LogisticRegression logreg = LogisticRegression() logreg.fit(X_train_scaled, y_train) y_pred = logreg.predict(X_test_scaled) # 计算准确率 from sklearn.metrics import accuracy_score print("Accuracy score:", accuracy_score(y_test, y_pred)) ``` 这段代码中,我们分别实现了StandardScaler和MinMaxScaler这两种数据标准化方法,并且使用逻辑回归进行分类。最后,我们计算了模型预测的准确率结果,应该与sklearn的一样。

相关推荐

修改和补充下列代码得到十折交叉验证的平均每一折auc值和平均每一折aoc曲线,平均每一折分类报告以及平均每一折混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse)

修改和补充下列代码得到十折交叉验证的平均auc值和平均aoc曲线,平均分类报告以及平均混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse) print('F?深度森林RMSE:', rmse) print('F?深度森林Accuracy:', accuracy_score(y_test, y_pred))

import numpy as np import pandas as pd import matplotlib.pyplot as plt import BPNN from sklearn import metrics from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error #导入必要的库 df1=pd.read_excel(r'D:\Users\Desktop\大数据\44.xls',0) df1=df1.iloc[:,:] #进行数据归一化 from sklearn import preprocessing min_max_scaler = preprocessing.MinMaxScaler() df0=min_max_scaler.fit_transform(df1) df = pd.DataFrame(df0, columns=df1.columns) x=df.iloc[:,:4] y=df.iloc[:,-1] #划分训练集测试集 cut=4#取最后cut=30天为测试集 x_train, x_test=x.iloc[4:],x.iloc[:4]#列表的切片操作,X.iloc[0:2400,0:7]即为1-2400行,1-7列 y_train, y_test=y.iloc[4:],y.iloc[:4] x_train, x_test=x_train.values, x_test.values y_train, y_test=y_train.values, y_test.values #神经网络搭建 bp1 = BPNN.BPNNRegression([4, 16, 1]) train_data=[[sx.reshape(4,1),sy.reshape(1,1)] for sx,sy in zip(x_train,y_train)] test_data = [np.reshape(sx,(4,1))for sx in x_test] #神经网络训练 bp1.MSGD(train_data, 1000, len(train_data), 0.2) #神经网络预测 y_predict=bp1.predict(test_data) y_pre = np.array(y_predict) # 列表转数组 y_pre=y_pre.reshape(4,1) y_pre=y_pre[:,0] #画图 #展示在测试集上的表现 draw=pd.concat([pd.DataFrame(y_test),pd.DataFrame(y_pre)],axis=1); draw.iloc[:,0].plot(figsize=(12,6)) draw.iloc[:,1].plot(figsize=(12,6)) plt.legend(('real', 'predict'),loc='upper right',fontsize='15') plt.title("Test Data",fontsize='30') #添加标题 #输出精度指标 print('测试集上的MAE/MSE') print(mean_absolute_error(y_pre, y_test)) print(mean_squared_error(y_pre, y_test) ) mape = np.mean(np.abs((y_pre-y_test)/(y_test)))*100 print('=============mape==============') print(mape,'%') # 画出真实数据和预测数据的对比曲线图 print("R2 = ",metrics.r2_score(y_test, y_pre)) # R2 运行上述程序。在下面这一步中draw=pd.concat([pd.DataFrame(y_test),pd.DataFrame(y_pre)],axis=1);我需要将归一化的数据变成真实值,输出对比图,该怎么修改程序

请教学式按句详细讲解以下代码:###--------------------KNN算法与决策树算法-------------------- from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split # 将文本数据转化为数值特征 vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(data_str_list) # 划分数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 特征缩放 scaler = StandardScaler() X_train = scaler.fit_transform(X_train.toarray()) X_test = scaler.transform(X_test.toarray()) from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score # 使用网格搜索进行超参数调优 param_grid = { "n_neighbors": [3, 5, 7, 9], "weights": ["uniform", "distance"], "algorithm": ["auto", "ball_tree", "kd_tree", "brute"] } knn = KNeighborsClassifier() grid_search = GridSearchCV(knn, param_grid, cv=5) grid_search.fit(X_train, y_train) print("KNN最优参数:", grid_search.best_params_) param_grid = { "criterion": ["gini", "entropy"], "max_depth": [3, 5, 7, 9] } dt = DecisionTreeClassifier() grid_search = GridSearchCV(dt, param_grid, cv=5) grid_search.fit(X_train, y_train) print("决策树最优参数:", grid_search.best_params_) # 训练分类器并进行预测 knn = KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto") knn.fit(X_train, y_train) knn_pred = knn.predict(X_test) dt = DecisionTreeClassifier(criterion="gini", max_depth=9) dt.fit(X_train, y_train) dt_pred = dt.predict(X_test) # 混合使用KNN和决策树进行文本分类 ensemble_pred = [] for i in range(len(knn_pred)): if knn_pred[i] == dt_pred[i]: ensemble_pred.append(knn_pred[i]) else: ensemble_pred.append(knn_pred[i]) # 输出分类结果和准确率 print("KNN准确率:", accuracy_score(y_test, knn_pred)) print("决策树准确率:", accuracy_score(y_test, dt_pred)) print("混合使用准确率:", accuracy_score(y_test, ensemble_pred))

import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import roc_auc_score from sklearn.utils.class_weight import compute_class_weight # 读取数据 data = pd.read_csv('database.csv') # 数据预处理 X = data.iloc[:, :-1].values y = data.iloc[:, -1].values scaler = StandardScaler() X = scaler.fit_transform(X) # 特征选择 pca = PCA(n_components=10) X = pca.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(y_train), y=y_train) # 构建CNN模型 model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(10, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1)) model.fit(X_train, y_train,class_weight=class_weights,epochs=100, batch_size=64, validation_data=(X_test, y_test)) # 预测结果 y_pred = model.predict(X_test) #检验值 accuracy = accuracy_score(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) print(auc) print("Accuracy:", accuracy) print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred)) print('Classification Report:\n', classification_report(y_test, y_pred))

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、