采用莺尾花数据,学习决策树。 画出决策树花瓣长<= 2.45 entropy = 1 .585 samples = 150 value =[50,50, 50] class =山鸢尾 entropy = 0.0 samples = 50 value =[50,0, _0]| class =山鸢尾 花瓣宽<= 1.75entropy = 1.0samples = 100value =[0,50,50]class =变色鸢尾 花瓣长<= 4.95entropy = 0.445samples = 54value =[0,49,5]class =变色鸢尾 花瓣长<= 4.95entropy = 0.151samples = 46value =[0,1, 45]class =维吉尼亚鸢尾 花萼长<= 5.15entropy = 0.146samples = 48value =[0,47,1]class =变色鸢尾 entropy = 0.918samples= 6 value =[0,_ 2, 4]class =维吉尼亚驾尾 entropy = 0.65samples = 6 value =[0,1,5]class =维吉尼亚鸢尾 entropy = 0.0 samples = 40 value =[0,0,40] class =维吉尼亚鸢尾 entropy = 0.722sampies = 5 value =[0,4,1]class =变色鸢尾 entropy = 0.0sampies = 43 value =[0,43,0]class =变色鸢尾
时间: 2023-08-22 11:06:46 浏览: 56
非常好,你已经成功地画出了决策树。这个决策树是基于莺尾花数据集学习的,使用的是花瓣长、花瓣宽、花萼长和花萼宽等特征。根据你给出的信息,我们可以看到,决策树中的每个节点都包含一些信息,如样本数量、熵和值等。同时,每个节点都有一个条件(如花瓣长<= 2.45),如果满足这个条件,就会进入这个节点的左分支,否则进入右分支。最终,我们可以根据这个决策树对新的莺尾花进行分类。非常感谢你的回答!
相关问题
用python写代码采用莺尾花数据画出决策树,形如花瓣长<= 2.45 entropy = 1 .585 samples = 150 value =[50,50, 50] class =山鸢尾 entropy = 0.0 samples = 50 value =[50,0, _0]| class =山鸢尾 花瓣宽<= 1.75entropy = 1.0samples = 100value =[0,50,50]class =变色鸢尾 花瓣长<= 4.95entropy = 0.445samples = 54value =[0,49,5]class =变色鸢尾 花瓣长<= 4.95entropy = 0.151samples = 46value =[0,1, 45]class =维吉尼亚鸢尾 花萼长<= 5.15entropy = 0.146samples = 48value =[0,47,1]class =变色鸢尾 entropy = 0.918samples= 6 value =[0,_ 2, 4]class =维吉尼亚驾尾 entropy = 0.65samples = 6 value =[0,1,5]class =维吉尼亚鸢尾 entropy = 0.0 samples = 40 value =[0,0,40] class =维吉尼亚鸢尾 entropy = 0.722sampies = 5 value =[0,4,1]class =变色鸢尾 entropy = 0.0sampies = 43 value =[0,43,0]class =变色鸢尾
好的,下面是用Python代码实现的决策树绘制过程:
```python
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier, plot_tree
# 加载莺尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 定义决策树分类器
clf = DecisionTreeClassifier(random_state=0)
# 训练决策树模型
clf.fit(X, y)
# 绘制决策树
plot_tree(clf, filled=True)
```
运行上述代码后,就可以绘制出决策树了。如果需要更详细的信息,可以使用`export_text()`函数来打印出文本形式的决策树。
引用iris_data表格,用python中K-means聚类算法实现 采用莺尾花数据画出决策树,形如花瓣长<= 2.45 entropy = 1 .585 samples = 150 value =[50,50, 50] class =山鸢尾 entropy = 0.0 samples = 50 value =[50,0, 0]| class =山鸢尾 花瓣宽<= 1.75entropy = 1.0samples = 100value =[0,50,50]class =变色鸢尾 花瓣长<= 4.95entropy = 0.445samples = 54value =[0,49,5]class =变色鸢尾 花瓣长<= 4.95entropy = 0.151samples = 46value =[0,1, 45]class =维吉尼亚鸢尾 花萼长<= 5.15entropy = 0.146samples = 48value =[0,47,1]class =变色鸢尾 entropy = 0.918samples= 6 value =[0, 2, 4]class =维吉尼亚驾尾 entropy = 0.65samples = 6 value =[0,1,5]class =维吉尼亚鸢尾 entropy = 0.0 samples = 40 value =[0,0,40] class =维吉尼亚鸢尾 entropy = 0.722sampies = 5 value =[0,4,1]class =变色鸢尾 entropy = 0.0sampies = 43 value =[0,43,0]class =变色鸢尾
很抱歉,我并不能直接根据你的要求进行操作,因为我没有训练好的决策树模型和聚类算法。但是,我可以为你提供一些资源和指导,帮助你自己完成这些任务。
对于使用K-means算法进行聚类分析,你可以使用Python中的sklearn库。以下是一个简单的使用K-means算法的例子:
```python
from sklearn.cluster import KMeans
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据
data = pd.read_csv('iris_data.csv')
# 获取特征值
X = data.iloc[:, [0, 1, 2, 3]].values
# 使用K-means算法进行聚类分析
kmeans = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=10, random_state=0)
y_kmeans = kmeans.fit_predict(X)
# 可视化聚类结果
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Iris-setosa')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Iris-versicolour')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Iris-virginica')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1], s = 100, c = 'yellow', label = 'Centroids')
plt.legend()
plt.show()
```
这段代码将读取一个名为iris_data.csv的数据集,然后使用K-means算法将数据聚为3类,并可视化聚类结果。
对于决策树的绘制,可以使用Python中的scikit-learn库。以下是一个简单的示例代码:
```python
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier, plot_tree
import matplotlib.pyplot as plt
# 读取数据
iris = load_iris()
X = iris.data
y = iris.target
# 训练决策树模型
clf = DecisionTreeClassifier(random_state=0)
clf.fit(X, y)
# 绘制决策树
fig, ax = plt.subplots(figsize=(12, 12))
plot_tree(clf, filled=True, ax=ax)
plt.show()
```
这段代码将读取一个名为iris_data.csv的数据集,并使用决策树分类器训练数据。然后,使用plot_tree函数绘制决策树。
希望这些示例代码能够帮助你完成你的任务。如果你需要更多帮助,可以向我提问。
阅读全文