用matlab代码实现朴素贝叶斯分类器,要求如下:1.导入鸢尾花数据集; 2.分别取三个类中每个类的40个样本作为训练集,10个样本作为测试集; 3.计算每个类的概率密度函数,即每个类的样本均值与方差(假设样本特征数据满足高斯分布); 4.将测试样本带入每个类的概率密度函数,并判断该样本属于哪个类别; 5.计算精确率,召回率,F度量。请按照 iris = load('C:\Users\86187\Desktop\Iris (1).csv')续写。
时间: 2024-03-24 13:40:05 浏览: 56
好的,以下是matlab代码实现朴素贝叶斯分类器的步骤:
1. 导入鸢尾花数据集
```
iris = load('C:\Users\86187\Desktop\Iris (1).csv');
```
2. 分别取三个类中每个类的40个样本作为训练集,10个样本作为测试集
```
train_index = [1:40, 51:90, 101:140];
test_index = [41:50, 91:100, 141:150];
train_data = iris(train_index, :);
test_data = iris(test_index, :);
```
3. 计算每个类的概率密度函数,即每个类的样本均值与方差(假设样本特征数据满足高斯分布)
```
class_num = 3;
feature_num = 4;
mu = zeros(class_num, feature_num);
sigma = zeros(class_num, feature_num);
for i = 1:class_num
class_data = train_data((i-1)*40+1:i*40, :);
for j = 1:feature_num
mu(i,j) = mean(class_data(:, j));
sigma(i,j) = std(class_data(:, j));
end
end
```
4. 将测试样本带入每个类的概率密度函数,并判断该样本属于哪个类别
```
test_label = zeros(30, 1);
for i = 1:30
test_sample = test_data(i, :);
p = zeros(class_num, 1);
for j = 1:class_num
p(j) = prod(normpdf(test_sample, mu(j,:), sigma(j,:)));
end
[max_p, max_idx] = max(p);
test_label(i) = max_idx;
end
```
5. 计算精确率,召回率,F度量
```
true_label = [ones(10,1); 2*ones(10,1); 3*ones(10,1)];
confusion_matrix = zeros(class_num, class_num);
for i = 1:30
confusion_matrix(true_label(i), test_label(i)) = confusion_matrix(true_label(i), test_label(i)) + 1;
end
precision = zeros(class_num, 1);
recall = zeros(class_num, 1);
f_measure = zeros(class_num, 1);
for i = 1:class_num
tp = confusion_matrix(i,i);
fp = sum(confusion_matrix(:,i)) - tp;
fn = sum(confusion_matrix(i,:)) - tp;
precision(i) = tp / (tp + fp);
recall(i) = tp / (tp + fn);
f_measure(i) = 2 * precision(i) * recall(i) / (precision(i) + recall(i));
end
mean_precision = mean(precision);
mean_recall = mean(recall);
mean_f_measure = mean(f_measure);
```
以上就是matlab代码实现朴素贝叶斯分类器的完整步骤。
阅读全文