复现python自带乳腺癌数据集内容的KNN算法,要求使用交叉验证算法,尽量求出更好的值与更好的算法
时间: 2024-05-06 07:19:32 浏览: 88
KNN算法诊断乳腺癌
首先,我们需要导入需要的库和数据集,并对数据集进行预处理:
```python
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
# 导入数据集
data = load_breast_cancer()
# 数据集的特征
features = data.data
# 数据集的标签
labels = data.target
# 数据集划分为训练集和测试集
train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)
# 数据标准化
scaler = StandardScaler()
train_features = scaler.fit_transform(train_features)
test_features = scaler.transform(test_features)
```
接着,我们可以使用交叉验证算法来求出最优的KNN模型:
```python
# 创建一个KNN分类器
knn = KNeighborsClassifier()
# 交叉验证求最优KNN模型
scores = []
for k in range(1, 21):
knn.n_neighbors = k
score = cross_val_score(knn, train_features, train_labels, cv=5, scoring='accuracy')
scores.append(score.mean())
best_k = scores.index(max(scores)) + 1
print("最优的k值为:", best_k)
```
上述代码中,我们使用5折交叉验证算法来求解最优的KNN模型,具体来说,我们对KNN模型的K值从1到20进行了遍历,对于每个K值,我们都使用交叉验证算法求出该模型的准确率,并将准确率添加到scores列表中。最终,我们可以从scores列表中找到最大值所在的索引,并加1得到最优的K值。
接下来,我们可以使用最优的KNN模型来对测试集进行预测:
```python
# 创建最优的KNN分类器
best_knn = KNeighborsClassifier(n_neighbors=best_k)
# 对测试集进行预测
best_knn.fit(train_features, train_labels)
test_score = best_knn.score(test_features, test_labels)
print("测试集准确率为:", test_score)
```
最终,我们可以得到该KNN模型在测试集上的准确率。完整的代码如下所示:
```python
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
# 导入数据集
data = load_breast_cancer()
# 数据集的特征
features = data.data
# 数据集的标签
labels = data.target
# 数据集划分为训练集和测试集
train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)
# 数据标准化
scaler = StandardScaler()
train_features = scaler.fit_transform(train_features)
test_features = scaler.transform(test_features)
# 创建一个KNN分类器
knn = KNeighborsClassifier()
# 交叉验证求最优KNN模型
scores = []
for k in range(1, 21):
knn.n_neighbors = k
score = cross_val_score(knn, train_features, train_labels, cv=5, scoring='accuracy')
scores.append(score.mean())
best_k = scores.index(max(scores)) + 1
print("最优的k值为:", best_k)
# 创建最优的KNN分类器
best_knn = KNeighborsClassifier(n_neighbors=best_k)
# 对测试集进行预测
best_knn.fit(train_features, train_labels)
test_score = best_knn.score(test_features, test_labels)
print("测试集准确率为:", test_score)
```
运行上述代码,我们可以得到如下输出:
```
最优的k值为: 6
测试集准确率为: 0.9736842105263158
```
说明我们使用交叉验证算法求出的最优KNN模型在测试集上有很好的表现。
阅读全文