yolov8 损失函数
时间: 2023-08-15 10:07:04 浏览: 461
损失函数学习笔记
5星 · 资源好评率100%
YOLOv8使用的损失函数是基于目标检测任务的特点进行设计的。YOLOv8采用的是一种多任务损失函数,同时考虑了目标的类别预测、边界框位置预测以及目标是否存在的预测。
该损失函数由五个部分组成:
1. 目标类别损失(classification loss):计算预测类别与实际类别之间的交叉熵损失。目标类别损失只在有目标的网格单元上计算。
2. 目标边界框位置损失(bounding box regression loss):计算预测边界框与实际边界框之间的平方损失。目标边界框位置损失也只在有目标的网格单元上计算。
3. 目标存在性损失(objectness loss):计算预测的目标存在性概率与实际目标存在性之间的平方损失。该损失函数在所有的网格单元上计算。
4. 无目标存在性损失(no objectness loss):计算预测的无目标存在性概率与实际无目标存在性之间的平方损失。该损失函数在所有的网格单元上计算。
5. 边界框坐标损失(coordinate loss):计算预测边界框坐标与实际边界框坐标之间的平方损失。该损失函数在所有的网格单元上计算。
这些损失函数通过加权求和的方式得到最终的总损失函数。YOLOv8通过反向传播算法,根据总损失函数来更新网络参数,以优化目标检测性能。
阅读全文