多层感知机与自注意力机制使用代码
时间: 2023-12-03 16:03:07 浏览: 131
CBAM注意力机制代码,以及如何对yolov5进行改进
以下是使用Python和PyTorch实现多层感知机和自注意力机制的代码示例:
多层感知机:
```python
import torch
import torch.nn as nn
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
```
自注意力机制:
```python
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, input_size, heads):
super(SelfAttention, self).__init__()
self.input_size = input_size
self.heads = heads
self.head_size = input_size // heads
self.query = nn.Linear(input_size, input_size)
self.key = nn.Linear(input_size, input_size)
self.value = nn.Linear(input_size, input_size)
self.softmax = nn.Softmax(dim=-1)
self.output = nn.Linear(input_size, input_size)
def forward(self, x):
batch_size, seq_len, input_size = x.size()
queries = self.query(x).view(batch_size, seq_len, self.heads, self.head_size).transpose(1,2)
keys = self.key(x).view(batch_size, seq_len, self.heads, self.head_size).transpose(1,2)
values = self.value(x).view(batch_size, seq_len, self.heads, self.head_size).transpose(1,2)
attention_scores = torch.matmul(queries, keys.transpose(-2, -1)) / (self.head_size ** 0.5)
attention_probs = self.softmax(attention_scores)
context = torch.matmul(attention_probs, values).transpose(1,2).contiguous().view(batch_size, seq_len, input_size)
output = self.output(context)
return output
```
这里的`input_size`指输入数据的特征数,`hidden_size`指隐藏层的大小,`output_size`指输出层的大小,`heads`指自注意力机制中注意力头的数量。在`forward`函数中,`x`表示输入数据,`out`表示输出数据。
阅读全文