利用卷积神经网络实现图像风格迁移代码

时间: 2023-10-16 14:08:26 浏览: 56
以下是利用卷积神经网络实现图像风格迁移的代码: ```python import tensorflow as tf import numpy as np import PIL.Image import time import functools # 定义常量 IMAGE_WIDTH = 512 IMAGE_HEIGHT = 512 CONTENT_WEIGHT = 1e3 STYLE_WEIGHT = 1e-2 TOTAL_VARIATION_WEIGHT = 30 # 加载图片 def load_image(image_path): max_dim = 512 img = tf.io.read_file(image_path) img = tf.image.decode_image(img, channels=3) img = tf.image.convert_image_dtype(img, tf.float32) shape = tf.cast(tf.shape(img)[:-1], tf.float32) long_dim = max(shape) scale = max_dim / long_dim new_shape = tf.cast(shape * scale, tf.int32) img = tf.image.resize(img, new_shape) img = img[tf.newaxis, :] return img # 显示图片 def show_image(image): if len(image.shape) > 3: image = tf.squeeze(image, axis=0) img = PIL.Image.fromarray(np.array(image * 255, dtype=np.uint8)) img.show() # 加载模型 def load_model(): # 加载预训练的VGG19模型 vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet') vgg.trainable = False # 获取需要的层 content_layers = ['block5_conv2'] style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] # 构建模型 content_outputs = [vgg.get_layer(name).output for name in content_layers] style_outputs = [vgg.get_layer(name).output for name in style_layers] outputs = content_outputs + style_outputs model = tf.keras.models.Model(vgg.input, outputs) return model, style_layers, content_layers # 计算内容损失 def calculate_content_loss(content_output, target_content): return tf.reduce_mean(tf.square(content_output - target_content)) # 计算Gram矩阵 def gram_matrix(input_tensor): channels = int(input_tensor.shape[-1]) a = tf.reshape(input_tensor, [-1, channels]) n = tf.shape(a)[0] gram = tf.matmul(a, a, transpose_a=True) return gram / tf.cast(n, tf.float32) # 计算风格损失 def calculate_style_loss(style_outputs, target_style): style_loss = 0 for style_output in style_outputs: style_output_gram = gram_matrix(style_output) target_style_gram = gram_matrix(target_style) style_loss += tf.reduce_mean(tf.square(style_output_gram - target_style_gram)) style_loss /= len(style_outputs) return style_loss # 计算总变差损失 def calculate_total_variation_loss(image): x_deltas, y_deltas = tf.image.image_gradients(image) return tf.reduce_mean(tf.abs(x_deltas)) + tf.reduce_mean(tf.abs(y_deltas)) # 计算总损失 def calculate_total_loss(model, loss_weights, init_image, gram_style_features, content_features): style_weight, content_weight, tv_weight = loss_weights model_outputs = model(init_image) content_output_features = model_outputs[len(gram_style_features):] style_output_features = model_outputs[:len(gram_style_features)] content_loss = 0 for target_content, content_output in zip(content_features, content_output_features): content_loss += calculate_content_loss(content_output, target_content) content_loss *= content_weight / len(content_features) style_loss = 0 for target_style, style_output in zip(gram_style_features, style_output_features): style_loss += calculate_style_loss(style_output, target_style) style_loss *= style_weight / len(gram_style_features) tv_loss = calculate_total_variation_loss(init_image) tv_loss *= tv_weight total_loss = content_loss + style_loss + tv_loss return total_loss # 计算梯度 @tf.function def calculate_gradients(model, loss_weights, init_image, gram_style_features, content_features): with tf.GradientTape() as tape: loss = calculate_total_loss(model, loss_weights, init_image, gram_style_features, content_features) gradients = tape.gradient(loss, init_image) return gradients, loss # 执行风格迁移 def style_transfer(content_image_path, style_image_path, epochs=10, steps_per_epoch=100, learning_rate=0.01): # 加载模型 model, style_layers, content_layers = load_model() # 加载图片并提取特征 content_image = load_image(content_image_path) style_image = load_image(style_image_path) content_features = [model(content_image)[idx] for idx in range(len(content_layers))] gram_style_features = [gram_matrix(model(style_image)[idx]) for idx in range(len(style_layers))] # 初始化生成的图像 init_image = tf.Variable(content_image) # 定义损失权重 loss_weights = (STYLE_WEIGHT, CONTENT_WEIGHT, TOTAL_VARIATION_WEIGHT) # 优化器 optimizer = tf.optimizers.Adam(learning_rate=learning_rate) # 记录时间 start_time = time.time() # 迭代训练 for epoch in range(epochs): for step in range(steps_per_epoch): gradients, loss = calculate_gradients(model, loss_weights, init_image, gram_style_features, content_features) optimizer.apply_gradients([(gradients, init_image)]) init_image.assign(tf.clip_by_value(init_image, 0, 1)) print(".", end='') print("Train step: {}".format(epoch)) end_time = time.time() print("Total time: {:.1f}".format(end_time - start_time)) # 显示生成的图像 show_image(init_image.numpy()) ``` 使用方法: ```python style_transfer("content.jpg", "style.jpg") ``` 其中,`content.jpg`是原始图片的路径,`style.jpg`是想要迁移的风格图片的路径。默认使用10个epochs进行风格迁移,每个epoch训练100步,学习率为0.01。可以根据需要进行调整。

相关推荐

最新推荐

recommend-type

基于 VGG19 的图像风格迁移研究

利用 VGG-19 神经网络 模型,结合人工智能开源框架 Pytorch 设计快速图像风格迁移算法。实验表明, 采用 VGG-19 神经网络模型的图像风格迁移技术,生成了具有高感知质量的新图 像,将任意照片的内容与众多著名艺术品...
recommend-type

Python通过TensorFlow卷积神经网络实现猫狗识别

在本文中,我们将探讨如何使用Python和TensorFlow构建一个卷积神经网络(CNN)来实现猫狗图像的识别。这是一个常见的计算机视觉任务,通常用于初学者熟悉深度学习和CNNs。我们将按照以下步骤进行: 1. **数据处理**...
recommend-type

基于深度卷积神经网络与迁移学习的鱼类分类识别.pdf

而重建并训练深度卷积神经网络(DCNN) 模型占用巨大的计算机资源 . 文章提出一种基于 DCNN 和迁移学习的方法,针对新图像数据集,通过选 择训练参数,对预训练模型进行再训练,实现鱼类的分类识别 . 通过实验证实,...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。