ResNet-34模型通道的变化数

时间: 2023-06-15 10:06:47 浏览: 214
ResNet-34 模型的通道数变化如下: 输入层:3 通道(RGB 彩色图像) 第一层卷积:64 通道 第二层卷积:64 通道 第三层卷积:128 通道 第四层卷积:256 通道 第五层卷积:512 通道 全连接层:1000 个神经元(对应 ImageNet 分类任务的 1000 个类别) 因此,ResNet-34 模型的通道数变化共有 6 层。
相关问题

介绍Inception-ResNet-v1模型的基本内容

### 回答1: Inception-ResNet-v1模型是一种深度卷积神经网络模型,它结合了Inception模型和ResNet模型的优点,具有更好的性能和更高的准确率。该模型采用了Inception模型的多分支结构,同时引入了ResNet模型的残差连接,使得模型可以更好地学习特征。此外,Inception-ResNet-v1模型还采用了批量归一化和修正线性单元等技术,进一步提高了模型的性能。 ### 回答2: Inception-ResNet-v1模型是一种深度卷积神经网络架构,结合了Inception模块和ResNet模块的特点。该模型采用了多层深度残差网络结构,旨在解决深度神经网络训练中的梯度消失和过拟合问题。 模型的主要组成部分是Inception模块和ResNet模块。Inception模块是一种多分支结构,每个分支使用不同大小的卷积核进行特征提取,然后将不同分支的输出在通道维度进行拼接。这样可以获得多尺度的特征表示,提高模型的表达能力。 ResNet模块引入了残差连接,即将输入特征和输出特征进行相加。通过残差连接,可以直接传递梯度,避免梯度消失的问题,同时还能使网络更易于训练。基于ResNet模块的特点,Inception-ResNet-v1模型使用了多个Inception模块和ResNet模块构建深层网络。 在Inception-ResNet-v1模型中,还使用了批归一化和非线性激活函数等技术来加强模型的建模能力和非线性表达能力。此外,模型还采用了全局平均池化层来减少模型参数量,避免过拟合,并确保模型对输入尺寸的适应性。 该模型在训练时通常使用交叉熵损失函数和优化算法(如随机梯度下降)进行端到端的训练。通过大量的图像数据和迭代优化,模型可以学习到高层次的抽象特征表示,从而提高对图像分类、目标检测等计算机视觉任务的准确性和性能。 总之,Inception-ResNet-v1模型综合了Inception模块和ResNet模块的优点,克服了深度神经网络训练过程中的一些问题,被广泛应用于计算机视觉领域,并在各类比赛和实际应用中取得了优异的成绩。 ### 回答3: Inception-ResNet-v1模型是一个卷积神经网络模型,用于图像识别和分类任务。它结合了Inception模块和ResNet模块的特点,强调网络的深度和多尺度特征表达。 Inception模块是由多个并行分支组成的,每个分支都采用不同大小的卷积核进行卷积操作,并将卷积结果进行合并。通过不同大小的卷积核,Inception模块可以同时捕获不同尺度下的特征,提高网络对不同物体尺度变化的感知能力。 ResNet模块通过引入残差连接(residual connection)解决了深度网络训练过程中的梯度消失和梯度爆炸问题。残差连接将输入直接添加到模块输出,使得模块可以学习残差特征。通过残差连接,ResNet模块可以训练更深的网络,提取更丰富的特征信息。 Inception-ResNet-v1模型结合了Inception模块和ResNet模块的优点。它引入残差连接来增强模型的训练能力,同时采用多尺度的卷积核来提取图像的多尺度特征。通过这种结合,Inception-ResNet-v1模型能够在保持高精度的同时,具有较低的计算成本。 Inception-ResNet-v1模型在ImageNet图像分类和COCO目标检测等任务上取得了较好的性能。它的设计思想在后续的深度学习模型中得到广泛应用,为图像识别和分类提供了重要参考。

完成ResNet-34,针对自己完成的ResNet变种架构代码,用自己完成的ResNet训练一个图片分类模型,打印出各层输出形状,说明残差块的设计,大块的设计, 参数的传递,1x1卷积的使用和通道数变化的模型架构,并对训练过程和测试结果进行分析,给出相关代码

以下是ResNet-34的代码实现,基于PyTorch框架: ``` import torch.nn as nn import torch.utils.model_zoo as model_zoo __all__ = ['ResNet', 'resnet34'] model_urls = { 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model ``` 这里的ResNet-34采用了基本块(BasicBlock)作为残差块,这个残差块由两个3x3卷积层和一个跳跃连接组成。在大块(layer)中,我们按照指定的层数叠加基本块,最终输出的特征图大小与输入大小相同。ResNet-34共包含4个大块,每个大块内包含多个残差块。 在代码中,我们通过`_make_layer`函数来实现大块的叠加,这个函数会根据指定的层数以及每个残差块的输入通道数和输出通道数来构造大块,并且在需要进行下采样时会使用`downsample`来实现跳跃连接。 在ResNet-34的最后,我们使用全局平均池化层来将特征图转化为一个向量,然后再通过一个线性层(fully connected layer)进行分类。 下面是使用自己实现的ResNet-34训练CIFAR-10数据集的代码: ``` import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义超参数 device = 'cuda' if torch.cuda.is_available() else 'cpu' num_epochs = 10 batch_size = 128 learning_rate = 0.1 # 加载数据集 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) # 定义模型 class ResNet34(nn.Module): def __init__(self): super(ResNet34, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.layer1 = nn.Sequential( BasicBlock(64, 64), BasicBlock(64, 64), BasicBlock(64, 64) ) self.layer2 = nn.Sequential( BasicBlock(64, 128, stride=2), BasicBlock(128, 128), BasicBlock(128, 128), BasicBlock(128, 128) ) self.layer3 = nn.Sequential( BasicBlock(128, 256, stride=2), BasicBlock(256, 256), BasicBlock(256, 256), BasicBlock(256, 256), BasicBlock(256, 256), BasicBlock(256, 256) ) self.layer4 = nn.Sequential( BasicBlock(256, 512, stride=2), BasicBlock(512, 512), BasicBlock(512, 512) ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x model = ResNet34().to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=5e-4) # 训练模型 total_step = len(trainloader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(trainloader): images = images.to(device) labels = labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in testloader: images = images.to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the model on the test images: {} %'.format(100 * correct / total)) ``` 在训练过程中,我们使用了随机裁剪、随机水平翻转和归一化等数据增强方法。在测试过程中,我们计算了模型在测试集上的准确率。 最后,我们可以通过`print(model)`来打印出我们训练好的ResNet-34模型的结构信息。
阅读全文

相关推荐

大家在看

recommend-type

CT取电电源技术

各种电流互感器取电电路,非常详细 高压线取电 各种电流互感器取电电路,非常详细 高压线取电
recommend-type

递推最小二乘辨识

递推最小二乘算法 递推辨识算法的思想可以概括成 新的参数估计值=旧的参数估计值+修正项 即新的递推参数估计值是在旧的递推估计值 的基础上修正而成,这就是递推的概念.
recommend-type

基于springboot的智慧食堂系统源码.zip

源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经
recommend-type

WebBrowser脚本错误的完美解决方案

当IE浏览器遇到脚本错误时浏览器,左下角会出现一个黄色图标,点击可以查看脚本错误的详细信息,并不会有弹出的错误信息框。当我们使用WebBrowser控件时有错误信息框弹出,这样程序显的很不友好,而且会让一些自动执行的程序暂停。我看到有人采取的解决方案是做一个窗体杀手程序来关闭弹出的窗体。本文探讨的方法是从控件解决问题。
recommend-type

GMW14241-中文翻译

通用汽车局域网高速,中速,低速CAN总线节点的通用汽车局域网设备测试规范

最新推荐

recommend-type

keras 特征图可视化实例(中间层)

特征图可视化可以帮助我们洞察输入图像经过卷积层后的变化,这通常可以揭示模型是如何学习到图像中的局部特征的。 可视化过程如下: 1. 加载模型权重:使用 `model.load_weights()` 方法加载预先训练好的模型权重...
recommend-type

pytorch 实现数据增强分类 albumentations的使用

而`albumentations`库则提供了更加丰富和灵活的数据增强选项,使得模型训练时可以处理更多的图像变化,从而提高模型的性能。 `albumentations`库包含了多种数据增强操作,如: 1. **Blur**:模糊图像,可以通过...
recommend-type

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制
recommend-type

Python代码实现带装饰的圣诞树控制台输出

内容概要:本文介绍了一段简单的Python代码,用于在控制台中输出一棵带有装饰的圣诞树。具体介绍了代码结构与逻辑,包括如何计算并输出树形的各层,如何加入装饰元素以及打印树干。还提供了示例装饰字典,允许用户自定义圣诞树装饰位置。 适用人群:所有对Python编程有一定了解的程序员,尤其是想要学习控制台图形输出的开发者。 使用场景及目标:适用于想要掌握如何使用Python代码创建控制台艺术,特别是对于想要增加节日氛围的小项目。目标是帮助开发者理解和实现基本的字符串操作与格式化技巧,同时享受创造乐趣。 其他说明:本示例不仅有助于初学者理解基本的字符串处理和循环机制,而且还能激发学习者的编程兴趣,通过调整装饰物的位置和树的大小,可以让输出更加个性化和丰富。
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依