NVIC_SystemReset

时间: 2023-08-19 12:18:03 浏览: 498
NVIC_SystemReset()是一个函数,用于复位STM32芯片。在执行该函数之前,可以通过设置FAULTMASK来关闭所有中断,以确保在执行复位函数期间不会被中断打断。执行NVIC_SystemReset()函数后,系统将重新执行代码,并将之前配置的外设寄存器恢复到复位状态。如果使用该函数无法完成软件复位,可以查找NVIC_SystemReset()函数的源代码,其中包含了具体的复位操作。对于某些特殊芯片,还可以使用看门狗复位的技巧来实现系统自复位。
相关问题

nvic_systemreset 头文件

### 回答1: `nvic_systemreset` 是一个函数,它可以用来重置系统。 它的头文件是 `stm32f4xx_hal_cortex.h`,需要在代码中包含该头文件,才能使用 `nvic_systemreset` 函数。 以下是 `nvic_systemreset` 函数的声明: ```c void NVIC_SystemReset(void); ``` 该函数没有参数和返回值,调用该函数将重置系统。 ### 回答2: `nvic_systemreset` 头文件用于在嵌入式系统中进行系统复位操作。 在嵌入式系统中,使用头文件 `nvic_systemreset` 可以通过编程的方式触发系统复位。以下是该头文件的一些功能和使用方式: 1. 定义了复位相关的宏:头文件中包含了一些宏定义,用于表示复位相关的参数和状态。这些宏可以在代码中使用,以便更方便地进行复位操作。 2. 提供了复位函数:头文件中可能包含了一个用于触发系统复位的函数。该函数可以使用特定的指令或调用底层的硬件接口来实现复位操作。 使用该头文件进行系统复位操作的一般步骤如下: 1. 引入头文件:在代码中引入 `nvic_systemreset` 头文件,以便可以使用相关的宏和函数。 2. 设置复位参数:根据需要,可以使用头文件中提供的宏定义相应的复位参数。 3. 调用复位函数:根据具体的使用场景,调用头文件中的复位函数来触发系统复位操作。 需要注意的是,在使用 `nvic_systemreset` 头文件进行系统复位时,应当谨慎操作,确保在适当的时机和条件下进行复位。复位操作可能会造成系统的重新启动,导致数据丢失和不可预测的行为。因此,在使用该头文件时,应仔细阅读相关文档和参考资料,了解头文件的使用方式和注意事项,确保安全和稳定性。

rtthread怎么用NVIC_SystemReset

RT-Thread(简称RTT)是一个轻量级、高性能的实时操作系统内核,它支持多种嵌入式平台。在RTT中,如果你想要通过NVIC (Non-Volatile Interrupt Controller) 控制系统复位,通常是在处理紧急故障或重启需求时使用`NVIC_SystemReset()`函数。 要使用`NVIC_SystemReset()`,首先你需要确保已包含了相关的头文件,如`rtthread.h`中的NVIC管理部分: ```c #include "rtthread.h" ``` 然后,在需要执行系统复位的地方,例如异常处理程序或全局中断服务函数中,调用该函数: ```c void HardFault_Handler(void) { // 在这里检查硬错误... if (/* 硬件故障条件 */) { // 清除中断,防止无限循环 NVIC_DisableIRQ(NVIC_irqNumber); // 替换为实际的中断号 // 引发系统复位 NVIC_SystemReset(); } } ``` 在这里,你需要替换`NVIC_irqNumber`为你想要清零并触发系统复位的那个中断号。记得在执行`NVIC_SystemReset()`之前,先清除可能引发无限循环的中断,以避免在系统复位前产生更多无法处理的问题。

相关推荐

为下面每一行代码添加注释:#include "stm32f10x.h" void RCC_Configuration(void) { /* Enable GPIOA, GPIOC and AFIO clocks / RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE); / Enable SYSCFG clock / RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; / Configure PA0 pin as input floating / GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); / Configure PC13 pin as output push-pull / GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOC, &GPIO_InitStructure); } void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure / Configure the NVIC Preemption Priority Bits / NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); / Enable the EXTI0 Interrupt / NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void EXTI_Configuration(void) { EXTI_InitTypeDef EXTI_InitStructure; / Configure EXTI Line0 to generate an interrupt on falling edge / EXTI_InitStructure.EXTI_Line = EXTI_Line0; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); / Connect EXTI Line0 to PA0 pin / GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0); } void SysTick_Configuration(void) { / Configure SysTick to generate an interrupt every 1ms / if (SysTick_Config(SystemCoreClock / 1000)) { / Capture error / while (1); } } void Delay(__IO uint32_t nTime) { / Wait for nTime millisecond / TimingDelay = nTime; while (TimingDelay != 0); } void TimingDelay_Decrement(void) { if (TimingDelay != 0x00) { TimingDelay--; } } int main(void) { RCC_Configuration(); GPIO_Configuration(); NVIC_Configuration(); EXTI_Configuration(); SysTick_Configuration(); / Infinite loop / while (1) { / Toggle PC13 LED every 500ms / GPIOC->ODR ^= GPIO_Pin_13; Delay(500); } } void EXTI0_IRQHandler(void) { / Check if PA0 button is pressed / if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0) == RESET) { / Reset MCU / NVIC_SystemReset(); } / Clear EXTI Line0 pending bit */ EXTI_ClearITPendingBit(EXTI_Line0); }

最新推荐

recommend-type

【图像融合】基于matlab深度学习医学图像融合【含Matlab源码 8038期】.md

【图像融合】基于matlab深度学习医学图像融合【含Matlab源码 8038期】.md
recommend-type

【图像配准】基于matlab SIFT图像配准【含Matlab源码 1007期】.md

CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像配准:SAR-SIFT改进的SAR图像配准、SIFT图像配准拼接、Powell+蚁群算法图像配准、Harris+SIFT图像配准、OpenSUFT图像配准、图像互信息值图像配准
recommend-type

基于 YOLOv5(假设为 YOLOv11)的火灾火焰烟雾检测系统(包含详细的完整的程序和数据)

本文详细介绍了一个利用深度学习模型YOLOv5构建的火灾火焰烟雾检测系统的设计和实现方法,系统能够实时识别图像中的火灾隐患并通过PyQt5实现友好的GUI交互。内容涵盖环境配置、YOLOv5模型准备及其在ONNX中的运用、以及检测逻辑和性能评估等重要环节,提供了可用于智能化监控、公共安全保障的应用方案。 适合人群:有一定深度学习基础的研发人员、安全领域从业者和计算机视觉爱好者。 使用场景及目标:该系统适合作为企业级或公共场所内的智能消防安防设备的一部分,在发生火灾初期及时提醒管理人员采取措施。 该文章适用于想要深入了解YOLOv5在具体场景下如何部署的研究人员和技术团队成员查阅。同时也可作为学习YOLOv5在实时对象检测领域的教学案例。
recommend-type

ahds-0.2.3-cp39-cp39-win_amd64.whl

ahds-0.2.3-cp39-cp39-win_amd64.whl
recommend-type

【图像加密】基于matlab预测误差分类置乱图像加密解密【含Matlab源码 1846期】.md

CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像加密: DNA混沌图像加密、Arnold置乱图像加密解密、Logistic+Tent+Kent+Hent图像加密与解密、双随机相位编码光学图像加密解密 正交拉丁方置乱图像加密解密、RSA图像加密解密、小波变换DWT图像加密解密、混沌结合小波变换图像加密
recommend-type

zlib-1.2.12压缩包解析与技术要点

资源摘要信息: "zlib-1.2.12.tar.gz是一个开源的压缩库文件,它包含了一系列用于数据压缩的函数和方法。zlib库是一个广泛使用的数据压缩库,广泛应用于各种软件和系统中,为数据的存储和传输提供了极大的便利。" zlib是一个广泛使用的数据压缩库,由Jean-loup Gailly和Mark Adler开发,并首次发布于1995年。zlib的设计目的是为各种应用程序提供一个通用的压缩和解压功能,它为数据压缩提供了一个简单的、高效的应用程序接口(API),该接口依赖于广泛使用的DEFLATE压缩算法。zlib库实现了RFC 1950定义的zlib和RFC 1951定义的DEFLATE标准,通过这两个标准,zlib能够在不牺牲太多计算资源的前提下,有效减小数据的大小。 zlib库的设计基于一个非常重要的概念,即流压缩。流压缩允许数据在压缩和解压时以连续的数据块进行处理,而不是一次性处理整个数据集。这种设计非常适合用于大型文件或网络数据流的压缩和解压,它可以在不占用太多内存的情况下,逐步处理数据,从而提高了处理效率。 在描述中提到的“zlib-1.2.12.tar.gz”是一个压缩格式的源代码包,其中包含了zlib库的特定版本1.2.12的完整源代码。"tar.gz"格式是一个常见的Unix和Linux系统的归档格式,它将文件和目录打包成一个单独的文件(tar格式),随后对该文件进行压缩(gz格式),以减小存储空间和传输时间。 标签“zlib”直接指明了文件的类型和内容,它是对库功能的简明扼要的描述,表明这个压缩包包含了与zlib相关的所有源代码和构建脚本。在Unix和Linux环境下,开发者可以通过解压这个压缩包来获取zlib的源代码,并根据需要在本地系统上编译和安装zlib库。 从文件名称列表中我们可以得知,压缩包解压后的目录名称是“zlib-1.2.12”,这通常表示压缩包中的内容是一套完整的、特定版本的软件或库文件。开发者可以通过在这个目录中找到的源代码来了解zlib库的架构、实现细节和API使用方法。 zlib库的主要应用场景包括但不限于:网络数据传输压缩、大型文件存储压缩、图像和声音数据压缩处理等。它被广泛集成到各种编程语言和软件框架中,如Python、Java、C#以及浏览器和服务器软件中。此外,zlib还被用于创建更为复杂的压缩工具如Gzip和PNG图片格式中。 在技术细节方面,zlib库的源代码是用C语言编写的,它提供了跨平台的兼容性,几乎可以在所有的主流操作系统上编译运行,包括Windows、Linux、macOS、BSD、Solaris等。除了C语言接口,zlib库还支持多种语言的绑定,使得非C语言开发者也能够方便地使用zlib的功能。 zlib库的API设计简洁,主要包含几个核心函数,如`deflate`用于压缩数据,`inflate`用于解压数据,以及与之相关的函数和结构体。开发者通常只需要调用这些API来实现数据压缩和解压功能,而不需要深入了解背后的复杂算法和实现细节。 总的来说,zlib库是一个重要的基础设施级别的组件,对于任何需要进行数据压缩和解压的系统或应用程序来说,它都是一个不可忽视的选择。通过本资源摘要信息,我们对zlib库的概念、版本、功能、应用场景以及技术细节有了全面的了解,这对于开发人员和系统管理员在进行项目开发和系统管理时能够更加有效地利用zlib库提供了帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Tidy库绘图功能全解析】:打造数据可视化的利器

![【Tidy库绘图功能全解析】:打造数据可视化的利器](https://deliveringdataanalytics.com/wp-content/uploads/2022/11/Data-to-ink-Thumbnail-1024x576.jpg) # 1. Tidy库概述 ## 1.1 Tidy库的起源和设计理念 Tidy库起源于R语言的生态系统,由Hadley Wickham在2014年开发,旨在提供一套标准化的数据操作和图形绘制方法。Tidy库的设计理念基于"tidy data"的概念,即数据应当以一种一致的格式存储,使得分析工作更加直观和高效。这种设计理念极大地简化了数据处理
recommend-type

将字典转换为方形矩阵

字典转换为方形矩阵意味着将字典中键值对的形式整理成一个二维数组,其中行和列都是有序的。在这个例子中,字典的键似乎代表矩阵的行索引和列索引,而值可能是数值或者其他信息。由于字典中的某些项有特殊的标记如`inf`,我们需要先过滤掉这些不需要的值。 假设我们的字典格式如下: ```python data = { ('A1', 'B1'): 1, ('A1', 'B2'): 2, ('A2', 'B1'): 3, ('A2', 'B2'): 4, ('A2', 'B3'): inf, ('A3', 'B1'): inf, } ``` 我们可以编写一个函
recommend-type

微信小程序滑动选项卡源码模版发布

资源摘要信息: "微信小程序源码模版_滑动选项卡" 是一个面向微信小程序开发者的资源包,它提供了一个实现滑动选项卡功能的基础模板。该模板使用微信小程序的官方开发框架和编程语言,旨在帮助开发者快速构建具有动态切换内容区域功能的小程序页面。 微信小程序是腾讯公司推出的一款无需下载安装即可使用的应用,它实现了“触手可及”的应用体验,用户扫一扫或搜一下即可打开应用。小程序也体现了“用完即走”的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。 滑动选项卡是一种常见的用户界面元素,它允许用户通过水平滑动来在不同的内容面板之间切换。在移动应用和网页设计中,滑动选项卡被广泛应用,因为它可以有效地利用屏幕空间,同时提供流畅的用户体验。在微信小程序中实现滑动选项卡,可以帮助开发者打造更加丰富和交互性强的页面布局。 此源码模板主要包含以下几个核心知识点: 1. 微信小程序框架理解:微信小程序使用特定的框架,它包括wxml(类似HTML的标记语言)、wxss(类似CSS的样式表)、JavaScript以及小程序的API。掌握这些基础知识是开发微信小程序的前提。 2. 页面结构设计:在模板中,开发者可以学习如何设计一个具有多个选项卡的页面结构。这通常涉及设置一个外层的容器来容纳所有的标签项和对应的内容面板。 3. CSS布局技巧:为了实现选项卡的滑动效果,需要使用CSS进行布局。特别是利用Flexbox或Grid布局模型来实现响应式和灵活的界面。 4. JavaScript事件处理:微信小程序中的滑动选项卡需要处理用户的滑动事件,这通常涉及到JavaScript的事件监听和动态更新页面的逻辑。 5. WXML和WXSS应用:了解如何在WXML中构建页面的结构,并通过WXSS设置样式来美化页面,确保选项卡的外观与功能都能满足设计要求。 6. 小程序组件使用:微信小程序提供了丰富的内置组件,其中可能包括用于滑动的View容器组件和标签栏组件。开发者需要熟悉这些组件的使用方法和属性设置。 7. 性能优化:在实现滑动选项卡时,开发者应当注意性能问题,比如确保滑动流畅性,避免因为加载大量内容导致的卡顿。 8. 用户体验设计:一个良好的滑动选项卡需要考虑用户体验,比如标签的易用性、内容的清晰度和切换的动画效果等。 通过使用这个模板,开发者可以避免从零开始编写代码,从而节省时间,更快地将具有吸引力的滑动选项卡功能集成到他们的小程序中。这个模板适用于需要展示多内容区块但又希望保持页面简洁的场景,例如产品详情展示、新闻资讯列表、分类内容浏览等。