模拟退火模型python代码
时间: 2024-09-05 22:05:08 浏览: 64
模拟退火是一种优化算法,用于寻找全局最优解。在Python中实现模拟退火通常涉及几个步骤,包括初始化、评估当前状态、接受新状态的概率计算以及循环更新等。以下是一个简单的模拟退火算法的Python示例,用于在一个二维数组中找到最小值:
```python
import random
def acceptance_probability(current_val, new_val, temp):
return min(1, exp((new_val - current_val) / temp))
def random_neighbor(grid, row, col):
# 生成随机邻居的行和列
neighbor_row = (row + random.randint(-1, 1)) % len(grid)
neighbor_col = (col + random.randint(-1, 1)) % len(grid[0])
return grid[neighbor_row][neighbor_col]
def simulated_annealing(grid, initial_temp, cooling_rate, max_steps):
row, col = random.choice(list(range(len(grid))))
current_val = grid[row][col]
best_val = current_val
best_pos = [row, col]
for step in range(max_steps):
new_val = grid[random_neighbor(grid, *best_pos)] # 选择随机邻居
if new_val < current_val or random.random() < acceptance_probability(current_val, new_val, initial_temp):
current_val = new_val
best_pos = [random_neighbor.grid, *best_pos] # 更新最佳位置
if current_val == min(grid.flat): # 如果达到全局最小值,提前结束
break
initial_temp *= cooling_rate # 冷却过程
return best_pos, current_val
# 示例网格
grid = [[5, 4, 6], [3, 8, 7], [9, 2, 1]]
initial_temp = 100
cooling_rate = 0.99
max_steps = 1000
result, _ = simulated_annealing(grid, initial_temp, cooling_rate, max_steps)
print(f"全局最小值在 ({result[0]}, {result[1]}),值为: {grid[result[0]][result[1]]}")
阅读全文