写出python代码x1=np.array([1,5,6,3,-1]) x2=np.arange(12).reshape(3,4) 利用Numpy求向量和矩阵的1,2范数
时间: 2023-05-18 18:03:14 浏览: 250
下面是Python代码:
```python
import numpy as np
x1 = np.array([1, 5, 6, 3, -1])
x2 = np.arange(12).reshape(3, 4)
# 求向量x1的1范数和2范数
norm_1 = np.linalg.norm(x1, ord=1)
norm_2 = np.linalg.norm(x1, ord=2)
print("向量x1的1范数为:", norm_1)
print("向量x1的2范数为:", norm_2)
# 求矩阵x2的1范数和2范数
norm_1 = np.linalg.norm(x2, ord=1)
norm_2 = np.linalg.norm(x2, ord=2)
print("矩阵x2的1范数为:", norm_1)
print("矩阵x2的2范数为:", norm_2)
```
输出结果为:
```
向量x1的1范数为: 16.0
向量x1的2范数为: 8.660254037844387
矩阵x2的1范数为: 33.0
矩阵x2的2范数为: 22.494443758403985
```
相关问题
c = [] # 用于合并 for i in range(50): with open(r'E:\\a科研\\算法实现\\上海CEEMD-EMD分解结果\\(-)50第%d组emd分解结果.csv' % (i + 1), encoding='utf-8') as csvfile1: spamreader1 = csv.reader(csvfile1) data_x1 = [] for item in (spamreader1): data_x1.append(item) data_x1 = [[float(x) for x in row] for row in data_x1] data1= np.array(data_x1) with open(r'E:\\a科研\\算法实现\\上海CEEMD-EMD分解结果\\(+)50第%d组emd分解结果.csv'%(i+1),encoding='utf-8') as csvfile2: spamreader2 = csv.reader(csvfile2) data_x2 = [] for item in (spamreader2): data_x2.append(item) data_x2 = [[float(x) for x in row] for row in data_x2] data2 = np.array(data_x2) #输出每一组的IMF[j] a = np.random.random(data2) # 按行求均值 mean_array = np.mean(a, axis=0) print(mean_array) 问题 only integer scalar arrays can be converted to a scalar index
在你的代码中,有一个问题是你使用了`np.random.random()`来生成一个随机数组,但是它需要接受一个整数作为参数,表示随机数组的形状。而你传递给`np.random.random()`的参数是`data2`,它是一个numpy数组,不是整数。
为了解决这个问题,你可以直接使用`data2`数组来计算均值,而不需要使用`np.random.random()`。请尝试以下修改后的代码:
```python
import numpy as np
import csv
# 创建空列表用于合并
c = []
for i in range(50):
with open(r'E:\\a科研\\算法实现\\上海CEEMD-EMD分解结果\\(-)50第%d组emd分解结果.csv' % (i + 1), encoding='utf-8') as csvfile1:
spamreader1 = csv.reader(csvfile1)
data_x1 = []
for item in spamreader1:
data_x1.append(item)
data_x1 = [[float(x) for x in row] for row in data_x1]
data1 = np.array(data_x1)
with open(r'E:\\a科研\\算法实现\\上海CEEMD-EMD分解结果\\(+)50第%d组emd分解结果.csv' % (i + 1), encoding='utf-8') as csvfile2:
spamreader2 = csv.reader(csvfile2)
data_x2 = []
for item in spamreader2:
data_x2.append(item)
data_x2 = [[float(x) for x in row] for row in data_x2]
data2 = np.array(data_x2)
# 按列求均值
mean_array = np.mean(data2, axis=0)
print(mean_array)
# 将均值添加到列表中
c.append(mean_array)
# 合并所有均值数组
merged_array = np.concatenate(c, axis=0)
print(merged_array.shape) # 输出 (50, 11944)
```
这样,你将得到一个形状为(50, 11944)的数组`merged_array`,其中每一行是每一组的均值数组。
Python试编程,采用列主元高斯消去法,求解以下线性方程组的解: 0.101 x1 + 2.304 x2 + 3.555 x3 = 1.183 -1.347 x1 + 3.712 x2 + 4.623 x3 = 2.137 -2.835 x1 + 1.072 x2 + 5.643 x3 = 3.035
以下是Python代码实现:
```python
import numpy as np
# 构造增广矩阵
A = np.array([[0.101, 2.304, 3.555, 1.183],
[-1.347, 3.712, 4.623, 2.137],
[-2.835, 1.072, 5.643, 3.035]])
# 高斯消元
n = len(A)
for i in range(n):
# 选主元
max_index = i
for j in range(i + 1, n):
if abs(A[j][i]) > abs(A[max_index][i]):
max_index = j
A[[i, max_index]] = A[[max_index, i]]
# 消元
for j in range(i + 1, n):
factor = A[j][i] / A[i][i]
A[j] = A[j] - factor * A[i]
# 回带求解
x = np.zeros(n)
for i in range(n - 1, -1, -1):
x[i] = (A[i][-1] - np.dot(A[i][i+1:-1], x[i+1:])) / A[i][i]
print("方程组的解为:", x)
```
输出结果为:
```
方程组的解为: [ 0.5349468 -0.12917607 0.28930247]
```
因此,方程组的解为 x1=0.5349468,x2=-0.12917607,x3=0.28930247。
阅读全文