cudnn.benchmark = True device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
时间: 2023-09-15 10:24:09 浏览: 273
These two lines of code are used in PyTorch to optimize performance when running on a GPU.
The first line, `cudnn.benchmark = True`, enables the CuDNN library to automatically find the best algorithm for your particular GPU and input data size. This can result in significant speed improvements for certain operations.
The second line, `device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')`, sets the device to run on either the first available GPU (`cuda:0`) if one is available, or on the CPU (`cpu`) if not. This allows for seamless switching between CPU and GPU computations without having to change the code.
相关问题
try: import thop except ImportError: thop = None logger = logging.getLogger(__name__) @contextmanager def torch_distributed_zero_first(local_rank: int): if local_rank not in [-1, 0]: torch.distributed.barrier() yield if local_rank == 0: torch.distributed.barrier() def init_torch_seeds(seed=0): torch.manual_seed(seed) if seed == 0: cudnn.benchmark, cudnn.deterministic = False, True else: cudnn.benchmark, cudnn.deterministic = True, False def select_device(device='', batch_size=None): s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' cpu = device.lower() == 'cpu' if cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' elif device: # non-cpu device requested os.environ['CUDA_VISIBLE_DEVICES'] = device assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' cuda = not cpu and torch.cuda.is_available() if cuda: n = torch.cuda.device_count() if n > 1 and batch_size: # check that batch_size is compatible with device_count assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' space = ' ' * len(s) for i, d in enumerate(device.split(',') if device else range(n)): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" s += 'CPU\n' logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe return torch.device('cuda:0' if cuda else 'cpu') def time_synchronized(): if torch.cuda.is_available(): torch.cuda.synchronize() return time.time()
这段代码是一个Python脚本,包含了一些用于PyTorch训练的实用函数。具体来说,它包含了以下函数:
- import thop:导入PyTorch的模块thop,用于计算模型的FLOPs和参数数量。
- torch_distributed_zero_first:用于在分布式训练中同步所有进程的执行顺序。
- init_torch_seeds:用于初始化PyTorch的随机数种子。
- select_device:用于选择PyTorch的设备,可以选择CPU或GPU。
- time_synchronized:用于在CPU和GPU之间同步时间。
这些函数都是用于方便PyTorch训练的实用函数,可以大大简化代码编写。
我希望使用cuda加速,请修改这段代码device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = ShuffleNet().to(device)
如果你想利用CUDA进行并行计算来加速模型训练,你可以按照以下步骤修改代码:
首先,在检查GPU可用性之前导入`torch.backends.cudnn`模块,这将启用CUDA中的自动混合精度运算库,通常能提高性能:
```python
import torch.backends.cudnn as cudnn
# 然后,设置设备为CUDA,如果可用
cudnn.benchmark = True # 设置 cudnn 的自动调整模式以优化性能
device = torch.device('cuda' if torch.cuda.is_available() and not torch.cuda.deterministic else 'cpu') # 如果有GPU并且不是在做调试确定性的测试
model = ShuffleNet()
model = model.to(device) # 将模型转移到选定的设备上
```
在这个修改后的版本中,`cudnn.benchmark=True`会让cuDNN在运行过程中自我优化算子的选择和执行路径,提高性能。`not torch.cuda.deterministic`是为了避免在调试阶段因使用随机化算法导致的结果一致性问题。
阅读全文