对于代码: # 创建一个transformer模型对象,并将其移动到GPU上(如果有) model = TransformerModel(input_size=input_size, output_size=output_size, num_layers=num_layers, num_heads=num_heads, dim_feedforward=dim_feedforward, dropout=dropout) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("use device: ",device) torch.cuda.set_device(device) torch.backends.cudnn.benchmark = True model=model.to(device) # 定义一个损失函数,这里使用均方误差损失函数 criterion = nn.MSELoss() # 定义一个优化器,这里使用Adam优化器 optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 开始训练模型 for epoch in range(num_epochs): model.train() # 设置模型为训练模式 train_loss = 0.0 # 初始化训练损失为0.0 for i, (inputs, outputs) in enumerate(train_loader): # 前向传播,得到模型的预测输出 inputs=inputs.to(device) outputs=outputs.to(device) preds = model(inputs, outputs) 它报错了: RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument index in method wrapper__index_select) 这是为什么?
时间: 2024-01-01 13:05:24 浏览: 140
这个错误是由于模型的输入数据和标签数据不在同一个设备上引起的。根据代码,你已经将模型移动到GPU上(如果有)了,但是你没有检查数据是否在相同的设备上。在这种情况下,你需要将输入数据和标签数据也移动到相同的设备上,可以通过以下代码解决问题:
```
inputs=inputs.to(device)
outputs=outputs.to(device)
```
将其放在 `for` 循环中加载数据的那个位置即可。
相关问题
import torch import torch.nn as nn import torchvision.models as models class FCNTransformer(nn.Module): def __init__(self, num_classes): super(FCNTransformer, self).__init__() # Load pre-trained V16 model as FCN backbone vgg16 = models.vgg16(pretrained=True) features = list(vgg16.features.children()) self.backbone = nn.Sequential(*features) # FCN layers self.fcn_layers = nn.Sequential( nn.Conv2d(512, 4096, 7), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, num_classes, 1) ) # Transformer layers self.transformer = nn.Transformer( d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1 ) def forward(self,x): # Backbone feature extraction features = self.backbone(x) # FCN layers fcn_out = self.fcn_layers(features) # Reshaping output for transformer input b, c, h, w = fcn_out.size() fcn_out = fcn_out.squeeze().view(c, b, -1).permute(2, 0, 1) # Reshaping for transformer input # Transformer encoding transformer_out = self.transformer.encode(fcn_out) # Reshaping output for segmentation prediction transformer_out = transformer_out.permute(1, 2, 0).view(b, c, h, w) return transformer_out if __name__ == '__main__': a = torch.randn(1, 3, 512, 512) model = FCNTransformer(num_classes=2) print(model(a).shape) 改进这段代码
这段代码看起来已经很完整了,但有一些改进可以提出。
首先,由于我们只需要使用 VGG16 的特征提取部分作为 FCN 的 backbone,而不需要其完整的网络结构,因此可以使用 `vgg16.features` 而不是 `vgg16` 来加载预训练模型。这样可以减少模型的参数量。
其次,为了更好地利用 GPU 的性能,可以将输入数据和模型移动到 GPU 上进行计算。可以使用 `to()` 方法将数据和模型移动到 GPU 上,如 `model.to(device)` 和 `a.to(device)`,其中 `device` 是你希望在其上运行代码的设备(如 `'cuda'`)。
最后,你可以考虑添加一些必要的注释来解释代码的功能和每个部分的作用。这有助于其他人更好地理解你的代码。
下面是改进后的代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class FCNTransformer(nn.Module):
def __init__(self, num_classes):
super(FCNTransformer, self).__init__()
# Load pre-trained V16 model as FCN backbone
vgg16 = models.vgg16(pretrained=True)
features = list(vgg16.features.children())
self.backbone = nn.Sequential(*features)
# FCN layers
self.fcn_layers = nn.Sequential(
nn.Conv2d(512, 4096, 7),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Conv2d(4096, 4096, 1),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Conv2d(4096, num_classes, 1)
)
# Transformer layers
self.transformer = nn.Transformer(
d_model=512,
nhead=8,
num_encoder_layers=6,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.1
)
def forward(self, x):
# Backbone feature extraction
features = self.backbone(x)
# FCN layers
fcn_out = self.fcn_layers(features)
# Reshaping output for transformer input
b, c, h, w = fcn_out.size()
fcn_out = fcn_out.squeeze().view(c, b, -1).permute(2, 0, 1) # Reshaping for transformer input
# Transformer encoding
transformer_out = self.transformer.encode(fcn_out)
# Reshaping output for segmentation prediction
transformer_out = transformer_out.permute(1, 2, 0).view(b, c, h, w)
return transformer_out
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
a = torch.randn(1, 3, 512, 512).to(device)
model = FCNTransformer(num_classes=2).to(device)
print(model(a).shape)
```
这样,你的代码就更完善了,同时也考虑了在 GPU 上进行计算的情况。
def generate(self): if self.backbone not in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']: self.model = get_model_from_name[self.backbone](num_classes=self.num_classes, pretrained=False) else: self.model = get_model_from_name[self.backbone](input_shape=self.input_shape, num_classes=self.num_classes, pretrained=False) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model.load_state_dict(torch.load(self.model_path, map_location=device)) self.model = self.model.eval() print('{} model, and classes loaded.'.format(self.model_path)) if self.cuda: self.model = nn.DataParallel(self.model) self.model = self.model.cuda()
这段代码定义了一个名为generate的方法,用于生成分类模型。具体实现过程如下:
1. `if self.backbone not in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']:`:判断模型的主干网络是否为vit_b_16、swin_transformer_tiny、swin_transformer_small、swin_transformer_base中的一种,如果不是则执行下一步,否则执行else语句。
2. `self.model = get_model_from_name[self.backbone](num_classes=self.num_classes, pretrained=False)`:调用get_model_from_name函数,通过主干网络名称获取对应的分类模型,并将类别总数作为参数传递给该函数,获取的模型赋值给self.model变量。
3. `else:`:如果模型的主干网络为vit_b_16、swin_transformer_tiny、swin_transformer_small、swin_transformer_base中的一种,则执行下面的代码。
4. `self.model = get_model_from_name[self.backbone](input_shape=self.input_shape, num_classes=self.num_classes, pretrained=False)`:调用get_model_from_name函数,通过主干网络名称获取对应的分类模型,并将输入图像大小和类别总数作为参数传递给该函数,获取的模型赋值给self.model变量。
5. `device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')`:判断当前设备是否支持GPU,如果支持则使用GPU进行计算,否则使用CPU进行计算。
6. `self.model.load_state_dict(torch.load(self.model_path, map_location=device))`:从模型文件中加载模型参数,并将其赋值给self.model。
7. `self.model = self.model.eval()`:将self.model设置为评估模式,即固定住模型参数,停止模型训练。
8. `print('{} model, and classes loaded.'.format(self.model_path))`:打印模型和类别文件已经加载的信息。
9. `if self.cuda:`:如果使用GPU进行计算,则执行下面的语句。
10. `self.model = nn.DataParallel(self.model)`:将模型转换为多GPU并行计算模型。
11. `self.model = self.model.cuda()`:将模型移动到GPU上进行计算。
阅读全文