用pythong定义gcn层
时间: 2024-03-09 19:21:55 浏览: 60
可以使用DGL库来定义GCN层,具体实现代码如下:
```python
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
class GCNLayer(nn.Module):
def __init__(self, in_feats, out_feats):
super(GCNLayer, self).__init__()
self.linear = nn.Linear(in_feats, out_feats)
def forward(self, g, features):
# normalize adjacency matrix
degs = g.in_degrees().float()
norm = torch.pow(degs, -0.5)
norm[torch.isinf(norm)] = 0
norm = norm.to(features.device).unsqueeze(1)
g.ndata['norm'] = norm
# perform graph convolution
g.ndata['h'] = features
g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='h'))
h = g.ndata['h']
# apply linear transformation
h = self.linear(h)
# apply non-linear activation function
h = F.relu(h)
return h
```
此代码实现了一个简单的GCN层,其中g表示图结构,features表示节点特征,h表示节点隐藏状态,in_feats和out_feats分别表示输入特征和输出特征的维度。该层通过计算归一化后的邻接矩阵和节点特征的乘积来进行卷积,然后应用线性变换和非线性激活函数来得到隐藏状态。
阅读全文