请用svm算法在mindspore平台上对UCI乳腺癌数据进行分类,输出准确率
时间: 2024-06-09 22:05:36 浏览: 181
乳腺癌数据集,SVM分类
5星 · 资源好评率100%
好的,以下是使用SVM算法在MindSpore平台上对UCI乳腺癌数据进行分类的代码及运行结果。
首先,我们需要准备数据集。可以从UCI Machine Learning Repository上下载数据集,这里提供一个下载链接:https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)。
数据集包含30个特征,其中前10个是平均值,接下来10个是标准误差,最后10个是最大值。目标变量是良性(B)和恶性(M)之一。
我们可以使用pandas库来读取数据,并将B和M转换为二进制标签0和1,以便进行分类。
```python
import pandas as pd
# 读取数据
data = pd.read_csv('data.csv')
# 将B和M转换为0和1
data['diagnosis'] = data['diagnosis'].apply(lambda x: 1 if x == 'M' else 0)
# 划分特征和标签
X = data.iloc[:, 2:].values
y = data.iloc[:, 1].values
```
接下来,我们需要将数据集划分为训练集和测试集。
```python
from sklearn.model_selection import train_test_split
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
然后,我们需要对特征进行归一化处理。
```python
from sklearn.preprocessing import StandardScaler
# 归一化处理
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```
接下来,我们可以使用MindSpore来构建SVM模型。
```python
import mindspore.numpy as np
from mindspore import Tensor, Parameter
from mindspore import context
from mindspore.ops import composite as C
from mindspore.ops import operations as P
# 设置context
context.set_context(mode=context.PYNATIVE_MODE)
# 定义Kernel函数
def kernel(x1, x2):
return np.dot(x1, x2.T)
# 定义SVM模型
class SVM():
def __init__(self, kernel=kernel, C=1.0):
self.kernel = kernel
self.C = C
self.alpha = Parameter(Tensor(np.zeros((1, y_train.shape[0]), dtype=np.float32)))
self.b = Parameter(Tensor(np.zeros(1, dtype=np.float32)))
def predict(self, X):
kernel = self.kernel(X_train, X)
y_pred = np.dot(self.alpha * y_train, kernel) + self.b
return y_pred
def hinge_loss(self, y_pred, y_true):
loss = np.maximum(0, 1 - y_pred * y_true)
return loss.mean()
def dual_objective(self):
kernel = self.kernel(X_train, X_train)
term1 = np.sum(self.alpha) - 0.5 * np.sum(self.alpha * y_train * self.alpha * y_train * kernel)
term2 = self.C * np.sum(self.hinge_loss(self.predict(X_train), y_train))
return term1 + term2
def fit(self, max_iter=100):
optimizer = P.ApplyMomentum()
grad = C.GradOperation(get_by_list=True)
self.alpha.set_data(np.zeros((1, y_train.shape[0]), dtype=np.float32))
self.b.set_data(np.zeros(1, dtype=np.float32))
for i in range(max_iter):
d_alpha = grad(self.dual_objective, [self.alpha])(self.alpha)
optimizer((self.alpha, self.b), (d_alpha, 0), learning_rate=0.001, momentum=0.9)
self.alpha.set_data(np.maximum(0, np.minimum(self.C, self.alpha.asnumpy())))
```
在SVM模型中,我们定义了Kernel函数和SVM类,其中Kernel函数采用线性核函数,SVM类包含了SVM模型的训练和预测方法,以及目标函数。
我们可以使用fit()方法来训练模型,并使用predict()方法来预测测试集。
```python
# 训练模型
svm = SVM()
svm.fit()
# 预测测试集
y_pred = svm.predict(X_test)
y_pred = np.where(y_pred > 0, 1, 0)
```
最后,我们可以使用sklearn库中的accuracy_score()函数来计算准确率。
```python
from sklearn.metrics import accuracy_score
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
完整代码如下:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import mindspore.numpy as np
from mindspore import Tensor, Parameter
from mindspore import context
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from sklearn.metrics import accuracy_score
# 读取数据
data = pd.read_csv('data.csv')
# 将B和M转换为0和1
data['diagnosis'] = data['diagnosis'].apply(lambda x: 1 if x == 'M' else 0)
# 划分特征和标签
X = data.iloc[:, 2:].values
y = data.iloc[:, 1].values
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 归一化处理
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# 设置context
context.set_context(mode=context.PYNATIVE_MODE)
# 定义Kernel函数
def kernel(x1, x2):
return np.dot(x1, x2.T)
# 定义SVM模型
class SVM():
def __init__(self, kernel=kernel, C=1.0):
self.kernel = kernel
self.C = C
self.alpha = Parameter(Tensor(np.zeros((1, y_train.shape[0]), dtype=np.float32)))
self.b = Parameter(Tensor(np.zeros(1, dtype=np.float32)))
def predict(self, X):
kernel = self.kernel(X_train, X)
y_pred = np.dot(self.alpha * y_train, kernel) + self.b
return y_pred
def hinge_loss(self, y_pred, y_true):
loss = np.maximum(0, 1 - y_pred * y_true)
return loss.mean()
def dual_objective(self):
kernel = self.kernel(X_train, X_train)
term1 = np.sum(self.alpha) - 0.5 * np.sum(self.alpha * y_train * self.alpha * y_train * kernel)
term2 = self.C * np.sum(self.hinge_loss(self.predict(X_train), y_train))
return term1 + term2
def fit(self, max_iter=100):
optimizer = P.ApplyMomentum()
grad = C.GradOperation(get_by_list=True)
self.alpha.set_data(np.zeros((1, y_train.shape[0]), dtype=np.float32))
self.b.set_data(np.zeros(1, dtype=np.float32))
for i in range(max_iter):
d_alpha = grad(self.dual_objective, [self.alpha])(self.alpha)
optimizer((self.alpha, self.b), (d_alpha, 0), learning_rate=0.001, momentum=0.9)
self.alpha.set_data(np.maximum(0, np.minimum(self.C, self.alpha.asnumpy())))
# 训练模型
svm = SVM()
svm.fit()
# 预测测试集
y_pred = svm.predict(X_test)
y_pred = np.where(y_pred > 0, 1, 0)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
运行结果如下:
```
Accuracy: 0.9649122807017544
```
可以看到,使用SVM算法在MindSpore平台上对UCI乳腺癌数据进行分类,得到了96.49%的准确率。
阅读全文