model = libsvmtrain(Y_train, X_train, '-s 3 -t 2 -p 0.1 -c 1 -g 0.1');
时间: 2024-06-06 14:10:46 浏览: 75
This line trains a support vector machine (SVM) model using the LIBSVM library for classification. The inputs to the function are:
- Y_train: a column vector of class labels for the training data
- X_train: a matrix of feature vectors for the training data
- '-s 3 -t 2 -p 0.1 -c 1 -g 0.1': a string of parameters for the SVM model.
The parameters in the string are as follows:
- '-s 3': specifies that we want to train a multi-class classification model using the Crammer-Singer method.
- '-t 2': specifies that we want to use the radial basis function (RBF) kernel for the SVM.
- '-p 0.1': specifies the epsilon tolerance for stopping criterion (i.e., the larger the value, the more tolerant the model is to misclassifications).
- '-c 1': specifies the penalty parameter C for the SVM (i.e., the larger the value, the more the model is penalized for misclassifications).
- '-g 0.1': specifies the gamma parameter for the RBF kernel (i.e., the larger the value, the more complex the model becomes).
The output of this function is the trained SVM model, which can be used to make predictions on new data.
阅读全文