config = { 'n_epochs': 3000, # maximum number of epochs 'batch_size': 270, # mini-batch size for dataloader 'optimizer': 'SGD', # optimization algorithm (optimizer in torch.optim) 'optim_hparas': { # hyper-parameters for the optimizer (depends on which optimizer you are using) 'lr': 0.001, # learning rate of SGD 可换成adam试试 'momentum': 0.9 # momentum for SGD }, 'early_stop': 200, # early stopping epochs (the number epochs since your model's last improvement) 'save_path': 'models/model.pth' # your model will be saved here }
时间: 2024-01-06 15:05:10 浏览: 158
这段代码是一个配置字典,包含了训练过中的各种参数和设置。
'n_epochs':3000 表示最大的训练轮数为3000 轮。
'batch_size': 270 表示每个 mini-batch 的样本数量为 270 个。在训练过程中,数据会被分成多个 mini-batches,每个 mini-batch 中的样本会被一起输入到模型中进行训练。
'optimizer': 'SGD' 表示选择的优化算法为随机梯度下降(Stochastic Gradient Descent)。
'optim_hparas' 是一个字典,包含了优化算法的超参数。在这个例子中,使用的是 SGD,所以该字典包含了学习率 lr 和动量 momentum 这两个超参数。学习率控制了每次参数更新的步长,动量可以帮助加速训练过程并提高模型收敛性。
'early_stop': 200 表示如果模型在连续 200 个轮次中没有改善,则提前停止训练。这是一种防止过拟合和节约训练时间的策略。
'save_path': 'models/model.pth' 表示训练过程中保存模型的路径和文件名。训练完成后,模型会被保存到指定的路径下,方便之后的加载和使用。
相关问题
dataset = CocoDetection(root=r'D:\file\study\data\COCO2017\train2017', annFile=r'D:\file\study\data\COCO2017\annotations\instances_train2017.json', transforms=transforms.Compose([transforms.ToTensor()])) # 定义训练集和测试集的比例 train_ratio = 0.8 test_ratio = 0.2 # 计算训练集和测试集的数据数量 num_data = len(dataset) num_train_data = int(num_data * train_ratio) num_test_data = num_data - num_train_data # 使用random_split函数将数据集划分为训练集和测试集 train_dataset, test_dataset = random_split(dataset, [num_train_data, num_test_data]) # 打印训练集和测试集的数据数量 print(f"Number of training data: {len(train_dataset)}") print(f"Number of test data: {len(test_dataset)}") train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=0) test_loader = DataLoader(test_dataset, batch_size=8, shuffle=True, num_workers=0) # define the optimizer and the learning rate scheduler params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) # train the model for 10 epochs num_epochs = 10 for epoch in range(num_epochs): # 将模型设置为训练模式 model.train() # 初始化训练损失的累计值 train_loss = 0.0 # 构建一个迭代器,用于遍历数据集 for i, images, targets in train_loader: print(images) print(targets) # 将数据转移到设备上 images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in t.items()} for t in targets]上述代码报错:TypeError: call() takes 2 positional arguments but 3 were given
这个错误是因为在你的数据读取过程中,`train_loader`返回了三个值,包括索引、图像和目标,但是你在迭代器中只使用了后两个值。为了解决这个问题,你可以修改迭代器的定义,将索引也加入到迭代器中,如下所示:
```python
for i, (images, targets) in enumerate(train_loader):
# do something with images and targets
```
这样,你就可以使用`enumerate`函数获取每个批次数据的索引,同时获取图像和目标。同时,如果你希望在训练过程中输出批次数据的索引,你也可以在代码中加入打印语句,如下所示:
```python
for i, (images, targets) in enumerate(train_loader):
print(f"Batch {i}:")
# do something with images and targets
```
希望这可以帮助你解决问题。
def train(train_dataset, val_dataset, batch_size, epochs, learning_rate, wt_decay, print_cost=True, isPlot=True): # 加载数据集并分割batch train_loader = data.DataLoader(train_dataset, batch_size) # x = data.DataLoader(train_dataset) # x_train_label, y_train_label = train_test_split(x, test_size = 0.2, stratify=y, shuffle=True) # 构建模型 model = FaceCNN() # 加载模型 # model = torch.load('./model/model.pth') model.to(device) # 损失函数和优化器 compute_loss = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=wt_decay) # 学习率衰减 # scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.8) for epoch in range(epochs): loss = 0 model.train() model = model.to(device) for images, labels in train_loader: optimizer.zero_grad() outputs = model.forward(images.to(device)) loss = compute_loss(outputs, labels.to(device)) loss.backward() optimizer.step() # 打印损失值 if print_cost: print('epoch{}: train_loss:'.format(epoch + 1), loss.item()) # 评估模型准确率 if epoch % 10 == 9: model.eval() acc_train = validate(model, train_dataset, batch_size) acc_val = validate(model, val_dataset, batch_size) print('acc_train: %.1f %%' % (acc_train * 100)) print('acc_val: %.1f %%' % (acc_val * 100)) return model
这段代码实现了一个训练函数 `train()`,用于训练一个人脸表情识别模型。具体步骤如下:
1. 加载数据集并分割 batch:使用 `DataLoader` 将训练数据集 `train_dataset` 加载,并按照指定的 `batch_size` 进行分割,得到一个数据加载器 `train_loader`。
2. 构建模型:创建一个人脸表情识别模型 `FaceCNN` 的实例。
3. 将模型移动到设备:将模型移动到指定的设备上,通常是 GPU 设备。
4. 定义损失函数和优化器:使用交叉熵损失函数和随机梯度下降(SGD)优化器。
5. 进行训练循环:按照指定的 `epochs` 进行训练循环,在每个 epoch 中,遍历训练数据集的每个 batch。
6. 清除梯度:在每个 batch 的训练之前,使用 `optimizer.zero_grad()` 清除模型参数的梯度。
7. 前向传播和计算损失:通过模型的前向传播获取预测结果,并计算预测结果与真实标签之间的交叉熵损失。
8. 反向传播和参数更新:通过调用 `loss.backward()` 进行反向传播,计算参数的梯度,并使用 `optimizer.step()` 更新模型的参数。
9. 打印损失值:如果 `print_cost` 参数为 True,在每个 epoch 完成后打印当前 epoch 的训练损失。
10. 评估模型准确率:如果当前 epoch 的索引是 9 的倍数,即每 10 个 epoch,使用验证集 `val_dataset` 对模型进行评估,并打印训练集和验证集的准确率。
11. 返回训练好的模型。
通过这些步骤,代码实现了对人脸表情识别模型进行训练的过程,包括模型的构建、损失函数的定义、优化器的设置、训练循环的执行和模型参数的更新。
阅读全文