opencv videocapture 获取h264
时间: 2023-11-01 16:08:41 浏览: 370
OpenCV可以通过VideoCapture对象来读取视频文件。如果您想读取H264编码的视频文件,可以使用以下代码:
```python
import cv2
# 打开视频文件
cap = cv2.VideoCapture('test.h264')
# 循环读取视频帧
while True:
ret, frame = cap.read()
if not ret:
break
# 处理视频帧
# ...
# 释放资源
cap.release()
```
在上面的代码中,`cap.read()`方法用于读取下一帧视频图像。如果视频文件中的所有帧都已读取完毕,则返回`False`。如果读取成功,则返回`True`和当前帧的图像数据。您可以在返回的图像数据上执行任何OpenCV图像处理操作。最后,使用`cap.release()`方法释放打开的视频文件。
相关问题
opencv videocapture 从ts文件获取h264
要使用OpenCV VideoCapture从TS文件获取H264视频,您需要先使用FFmpeg将TS文件转换为H264格式。以下是一些步骤:
1. 安装FFmpeg:
```bash
sudo apt-get install ffmpeg
```
2. 将TS文件转换为H264格式:
```bash
ffmpeg -i input.ts -vcodec copy -bsf:v h264_mp4toannexb -an output.h264
```
3. 使用OpenCV VideoCapture从H264文件中读取视频帧:
```python
import cv2
cap = cv2.VideoCapture('output.h264')
while True:
ret, frame = cap.read()
if not ret:
break
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
请注意,如果您的H264视频帧未经过编码,则您需要使用OpenCV中的VideoWriter来将其编码为视频文件。
写一段c++ opencv实时获取摄像头,识别和匹配人脸的代码
以下是一个使用OpenCV和Dlib库实时获取摄像头,识别和匹配人脸的C++代码示例:
```c++
#include <iostream>
#include <opencv2/opencv.hpp>
#include <dlib/opencv.h>
#include <dlib/image_processing.h>
#include <dlib/image_processing/frontal_face_detector.h>
using namespace std;
using namespace cv;
using namespace dlib;
int main(int argc, char** argv) {
// 加载人脸检测器
frontal_face_detector detector = get_frontal_face_detector();
// 加载人脸特征提取器
shape_predictor predictor;
deserialize("shape_predictor_68_face_landmarks.dat") >> predictor;
// 加载已知人脸图像和其对应的特征
std::vector<Mat> known_face_images;
std::vector<std::vector<float>> known_face_features;
// 省略加载已知人脸图像和特征的代码
// 打开摄像头
VideoCapture cap(0);
if (!cap.isOpened()) {
cerr << "无法打开摄像头" << endl;
return -1;
}
while (true) {
// 从摄像头中读取一帧图像
Mat frame;
cap >> frame;
// 将OpenCV Mat转换为Dlib图像格式
cv_image<bgr_pixel> dlib_image(frame);
// 检测人脸
std::vector<rectangle> dets = detector(dlib_image);
// 对于每个检测到的人脸,计算其特征并与已知人脸进行匹配
for (unsigned long j = 0; j < dets.size(); ++j) {
full_object_detection shape = predictor(dlib_image, dets[j]);
// 计算人脸特征
matrix<rgb_pixel> face_chip;
extract_image_chip(dlib_image, get_face_chip_details(shape, 150, 0.25), face_chip);
std::vector<float> face_feature = face_recognition_model.compute_face_descriptor(face_chip);
// 与已知人脸进行匹配
double min_distance = 1.0;
int min_index = -1;
for (int i = 0; i < known_face_features.size(); ++i) {
double distance = 0;
for (int j = 0; j < 128; ++j) {
distance += pow(face_feature[j] - known_face_features[i][j], 2);
}
distance = sqrt(distance);
if (distance < min_distance) {
min_distance = distance;
min_index = i;
}
}
// 在图像中绘制人脸框和匹配结果
rectangle rect(dets[j].left(), dets[j].top(), dets[j].right(), dets[j].bottom());
rectangle rect_text(dets[j].left(), dets[j].top() - 20, dets[j].right(), dets[j].top());
putText(frame, "unknown", Point(rect_text.left(), rect_text.bottom()), FONT_HERSHEY_COMPLEX_SMALL, 0.8, Scalar(0, 0, 255), 1);
if (min_index >= 0 && min_distance < 0.5) {
rectangle rect_text(dets[j].left(), dets[j].top() - 20, dets[j].right(), dets[j].top());
putText(frame, "known", Point(rect_text.left(), rect_text.bottom()), FONT_HERSHEY_COMPLEX_SMALL, 0.8, Scalar(0, 255, 0), 1);
}
rectangle(frame, rect, Scalar(0, 0, 255), 2);
}
// 显示结果
imshow("人脸识别", frame);
// 按下ESC键退出程序
if (waitKey(1) == 27) {
break;
}
}
return 0;
}
```
这段代码首先加载了人脸检测器和特征提取器。然后,它加载了已知人脸图像和其对应的特征。接着,它打开了摄像头,并不断从摄像头中读取图像。对于每个读取到的图像,它使用人脸检测器检测人脸,并使用特征提取器计算每个人脸的特征。然后,它将每个人脸的特征与已知人脸的特征进行匹配,并在图像中绘制人脸框和匹配结果。最后,它将结果显示出来,并等待ESC键退出程序。
阅读全文