用python 实现条件互信息计算
时间: 2023-07-12 15:32:45 浏览: 294
上面的回答中已经给出了Python实现条件互信息的代码,但是这里再给一个更详细的代码:
```python
import numpy as np
from scipy import special, stats
def conditional_mutual_information(x, y, z):
# Compute mutual information between x and y
mi_xy = mutual_information(x, y)
# Compute mutual information between x and y conditioned on z
mi_xyz = mutual_information(np.column_stack((x, z)), np.column_stack((y, z)))
mi_xz = mutual_information(z, x)
mi_yz = mutual_information(z, y)
# Compute conditional mutual information
cmi = mi_xy - mi_xz - mi_yz + mi_xyz
return cmi
def mutual_information(x, y):
# Compute joint probability distribution
p_xy, _, _ = np.histogram2d(x, y)
# Compute marginal probability distributions
p_x = p_xy.sum(axis=1)
p_y = p_xy.sum(axis=0)
# Compute entropy of marginal probability distributions
h_x = entropy(p_x)
h_y = entropy(p_y)
# Compute entropy of joint probability distribution
h_xy = entropy(p_xy.reshape(-1))
# Compute mutual information
mi = h_x + h_y - h_xy
return mi
def entropy(p):
# Compute entropy of probability distribution
p = p[np.nonzero(p)]
return -np.sum(p * np.log2(p))
# Example usage
x = np.random.normal(0, 1, size=1000)
y = x ** 2 + np.random.normal(0, 0.5, size=1000)
z = np.random.binomial(1, 0.5, size=1000)
cmi = conditional_mutual_information(x, y, z)
print("CMI between x and y conditioned on z:", cmi)
```
此代码实现了条件互信息和互信息的计算。其中,`conditional_mutual_information`函数计算条件互信息,`mutual_information`函数计算互信息,`entropy`函数计算熵。使用示例数据进行测试,输出CMI的值。
阅读全文