用pytorch构建一个可以可视化模型结构的代码
时间: 2024-02-05 20:04:11 浏览: 73
pytorch 模型可视化的例子
可以使用`torchsummary`库来构建一个可以可视化模型结构的代码。以下是一个简单的示例:
```python
import torch
import torch.nn as nn
from torchsummary import summary
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(32 * 8 * 8, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = self.relu(x)
x = self.pool(x)
x = x.view(-1, 32 * 8 * 8)
x = self.fc1(x)
return x
model = MyModel()
summary(model, (3, 32, 32))
```
在这个例子中,我们首先定义了一个包含卷积层、池化层和全连接层的简单的神经网络模型`MyModel`。然后,我们使用`torchsummary`库中的`summary`函数来打印模型的结构信息,包括每一层的名称、输出形状、参数数量等等。在本例中,我们打印的是模型对输入尺寸为`(3, 32, 32)`的数据的响应。这段代码将输出以下信息:
```
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 16, 32, 32] 448
ReLU-2 [-1, 16, 32, 32] 0
MaxPool2d-3 [-1, 16, 16, 16] 0
Conv2d-4 [-1, 32, 16, 16] 4,640
ReLU-5 [-1, 32, 16, 16] 0
MaxPool2d-6 [-1, 32, 8, 8] 0
Linear-7 [-1, 10] 20,490
================================================================
Total params: 25,578
Trainable params: 25,578
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.31
Params size (MB): 0.10
Estimated Total Size (MB): 0.42
----------------------------------------------------------------
```
阅读全文