最小系统构成为:STM32F103ZET6芯片、电源模块、温湿度传感器、雨滴传感器、液晶显示模块、USB转串口模块、报警系统。,请介绍该最小系统

时间: 2024-01-30 10:03:20 浏览: 23
这个最小系统是一个基于STM32F103ZET6芯片的嵌入式系统,主要用于监测环境的温度、湿度和降雨情况,并通过液晶显示模块显示数据。它还配备了USB转串口模块,可以通过USB接口与计算机进行通信。系统还包含了报警系统,当温度、湿度或降雨超过设定阈值时,系统会触发报警,提醒用户采取相应的措施。 该系统的核心芯片是STM32F103ZET6,它是一款性能稳定、功能强大的ARM Cortex-M3处理器,具有高达72MHz的运行速度和512KB的Flash存储器。在该系统中,它作为整个系统的主控芯片,用于控制温湿度传感器、雨滴传感器、液晶显示模块和报警系统等各个外设的工作。 温湿度传感器和雨滴传感器是用于测量环境的温度、湿度和降雨情况的传感器。它们通过与STM32F103ZET6芯片进行通信,将测量到的数据传输给主控芯片进行处理。 液晶显示模块作为系统的输出设备,用于显示温度、湿度和降雨情况等数据。 USB转串口模块是用于实现系统与计算机之间的通信。通过该模块,用户可以方便地将系统中采集到的数据传输到计算机上进行处理和分析。 报警系统是用于在温度、湿度或降雨超过设定阈值时触发报警。它可以通过蜂鸣器、LED灯或其他方式向用户发出警报,提醒用户采取相应的措施。
相关问题

针对下面这段话写一段小结:对STM32F103ZET6单片机、温湿度传感器、雨滴传感器、LCD模块、串口模块、电源模块和报警系统进行了介绍并设计了相应的电路图

这段话介绍了一些电子元件和模块,包括STM32F103ZET6单片机、温湿度传感器、雨滴传感器、LCD模块、串口模块、电源模块和报警系统,并且还提到了对它们进行了设计相应的电路图。这些元件和模块在电子设计中都有广泛的应用,可以实现各种功能,比如检测环境温湿度、检测雨水、显示信息等等。设计电路图是电子设计中的重要环节,可以确保电路的正常工作和稳定性。

基于STM32f103zet6的dht11温湿度传感器数据采集代码

以下是基于STM32f103zet6的dht11温湿度传感器数据采集代码,你可以根据自己的实际情况进行修改和调试: ```c #include "stm32f10x.h" #include "dht11.h" #include "delay.h" int main(void) { uint8_t res; uint8_t humi, temp; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); //使能GPIOB时钟 DHT11_Init(); //初始化DHT11 while(1) { res = DHT11_Read_Data(&humi, &temp); //读取温湿度数据 if(res == 0) { //读取成功 printf("Temperature: %d.%d *C, Humidity: %d.%d %%\r\n", temp/10, temp%10, humi/10, humi%10); } else { //读取失败 printf("Read error!\r\n"); } Delay_Ms(2000); //延时2s } } ``` 其中,`dht11.h`和`delay.h`是需要自己编写的头文件,可以参考下面的示例代码: ```c #ifndef __DHT11_H #define __DHT11_H #include "stm32f10x.h" #define DHT11_PIN GPIO_Pin_0 #define DHT11_GPIO GPIOB #define DHT11_RCC RCC_APB2Periph_GPIOB void DHT11_Init(void); uint8_t DHT11_Read_Byte(void); uint8_t DHT11_Read_Data(uint8_t *humi, uint8_t *temp); #endif ``` ```c #ifndef __DELAY_H #define __DELAY_H #include "stm32f10x.h" void Delay_Init(void); void Delay_Ms(uint16_t nms); void Delay_Us(uint32_t nus); #endif ``` 以下是`dht11.c`和`delay.c`的代码示例,你可以根据自己的需求进行修改和完善: ```c #include "dht11.h" #include "delay.h" //DHT11初始化 void DHT11_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(DHT11_RCC, ENABLE); //使能GPIOB时钟 GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //输出模式 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50MHz GPIO_Init(DHT11_GPIO, &GPIO_InitStructure); //初始化GPIO } //DHT11读取一个字节 uint8_t DHT11_Read_Byte(void) { uint8_t i, byte = 0; for(i=0; i<8; i++) { while(!GPIO_ReadInputDataBit(DHT11_GPIO, DHT11_PIN)); //等待高电平 Delay_Us(30); //延时30us if(GPIO_ReadInputDataBit(DHT11_GPIO, DHT11_PIN)) { //如果仍是高电平 byte |= (1<<(7-i)); //写入数据,MSB先传输 while(GPIO_ReadInputDataBit(DHT11_GPIO, DHT11_PIN)); //等待低电平 } } return byte; } //DHT11读取温湿度数据 uint8_t DHT11_Read_Data(uint8_t *humi, uint8_t *temp) { uint8_t buf[5], i; GPIO_ResetBits(DHT11_GPIO, DHT11_PIN); //发送起始信号 Delay_Ms(18); GPIO_SetBits(DHT11_GPIO, DHT11_PIN); Delay_Us(30); if(!GPIO_ReadInputDataBit(DHT11_GPIO, DHT11_PIN)) { //等待DHT11响应 while(!GPIO_ReadInputDataBit(DHT11_GPIO, DHT11_PIN)); //等待DHT11响应完成 for(i=0; i<5; i++) { buf[i] = DHT11_Read_Byte(); //读取5个字节的数据 } if((buf[0]+buf[1]+buf[2]+buf[3]) == buf[4]) { //校验和正确 *humi = buf[0]; *temp = buf[2]; return 0; //返回读取成功 } } return 1; //返回读取失败 } ``` ```c #include "delay.h" static uint32_t TimingDelay; //延时初始化 void Delay_Init(void) { SysTick->CTRL = 0x00; SysTick->LOAD = SystemCoreClock / 1000000 - 1; SysTick->VAL = 0x00; SysTick->CTRL = 0x05; } //延时nms void Delay_Ms(uint16_t nms) { TimingDelay = nms; while(TimingDelay != 0); } //延时nus void Delay_Us(uint32_t nus) { uint32_t ticks; ticks = nus * (SystemCoreClock / 1000000); while(ticks--); } //SysTick中断处理函数 void SysTick_Handler(void) { if(TimingDelay != 0x00) { TimingDelay--; } } ```

相关推荐

最新推荐

recommend-type

启明欣欣stm32f103rct6开发板原理图

启明欣欣stm32f103rct6开发板原理图 哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈...
recommend-type

STM32F103RET6TR中文数据手册.pdf

STM32F103RET6TR中文数据手册,同样适用于STM32F103RE 、 STM32F103ZE 、 STM32F103VE、STM32F103RD、 STM32F103VD、 STM32F103ZD、STM32F103RC、 STM32F103VC、 STM32F103ZC
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信