sklearn调用逻辑回归模块,自编程实现逻辑回归算法完整代码
时间: 2023-10-13 19:07:05 浏览: 128
好的,以下是使用Python和scikit-learn库实现逻辑回归算法的完整代码:
```python
import numpy as np
from sklearn.linear_model import LogisticRegression
# 生成数据集
np.random.seed(0)
X = np.random.randn(100, 2)
y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
# 使用scikit-learn的逻辑回归模型
clf = LogisticRegression()
clf.fit(X, y)
# 打印模型的参数
print("Coefficients:", clf.coef_)
print("Intercept:", clf.intercept_)
# 预测新的数据点的类别
new_data = np.array([[0.5, 0.5], [-0.5, -0.5]])
print("Predictions:", clf.predict(new_data))
```
这段代码首先生成一个随机的二元分类数据集,然后使用scikit-learn中的LogisticRegression类来拟合这个数据集。最后,代码打印出了模型的参数和预测了两个新的数据点的类别。
相关问题
sklearn调用逻辑回归模块,自编程实现逻辑回归算法代码
好的,下面是自编程实现逻辑回归算法的一份Python代码:
```python
import numpy as np
class MyLogisticRegression:
def __init__(self, learning_rate=0.01, num_iterations=10000):
self.learning_rate = learning_rate
self.num_iterations = num_iterations
def sigmoid(self, z):
return 1 / (1 + np.exp(-z))
def cost_function(self, X, y, theta):
m = len(y)
h = self.sigmoid(np.dot(X, theta))
J = -1/m * np.sum(y * np.log(h) + (1-y) * np.log(1-h))
return J
def gradient_descent(self, X, y, theta):
m = len(y)
for i in range(self.num_iterations):
h = self.sigmoid(np.dot(X, theta))
gradient = np.dot(X.T, (h - y)) / m
theta -= self.learning_rate * gradient
return theta
def fit(self, X, y):
X = np.insert(X, 0, 1, axis=1) # add bias term
n = X.shape[1]
self.theta = np.zeros((n,1))
self.theta = self.gradient_descent(X, y, self.theta)
def predict(self, X):
X = np.insert(X, 0, 1, axis=1) # add bias term
y_pred = np.round(self.sigmoid(np.dot(X, self.theta)))
return y_pred
```
这里使用了梯度下降算法求解逻辑回归模型,其中`sigmoid`函数用于计算逻辑回归模型的预测值,`cost_function`函数用于计算模型的损失函数,`gradient_descent`函数用于求解模型参数,`fit`函数用于训练模型,`predict`函数用于对新数据进行预测。
sklearn调用逻辑回归模块,自编程实现逻辑回归算法复杂的完整代码
好的,以下是一个简单的逻辑回归算法的Python代码实现,使用了sklearn库中的LogisticRegression模块作为参考:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义sigmoid函数
def sigmoid(z):
return 1 / (1 + np.exp(-z))
# 定义逻辑回归模型
class LogisticRegression:
def __init__(self, learning_rate=0.01, num_iterations=100):
self.learning_rate = learning_rate
self.num_iterations = num_iterations
self.weights = None
self.bias = None
def fit(self, X, y):
# 初始化参数
m, n = X.shape
self.weights = np.zeros((n, 1))
self.bias = 0
# 梯度下降
for i in range(self.num_iterations):
z = np.dot(X, self.weights) + self.bias
A = sigmoid(z)
cost = -1/m * np.sum(y*np.log(A) + (1-y)*np.log(1-A))
dz = A - y
dw = 1/m * np.dot(X.T, dz)
db = 1/m * np.sum(dz)
self.weights -= self.learning_rate * dw
self.bias -= self.learning_rate * db
if i % 1000 == 0:
print("Cost after iteration %i: %f" % (i, cost))
def predict(self, X):
z = np.dot(X, self.weights) + self.bias
A = sigmoid(z)
y_pred = np.round(A)
return y_pred
# 测试
np.random.seed(0)
X = np.random.randn(100, 2)
y = np.random.randint(0, 2, size=(100, 1))
model = LogisticRegression(learning_rate=0.1, num_iterations=10000)
model.fit(X, y)
y_pred = model.predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
```
这段代码实现了一个简单的逻辑回归算法,包括sigmoid函数、梯度下降、模型拟合和预测等步骤。可以通过调整learning_rate和num_iterations参数来优化模型的性能。
阅读全文