贝叶斯优化抽样的MATLAB代码
时间: 2024-09-06 12:00:45 浏览: 83
贝叶斯优化是一种高效的全局优化算法,它利用贝叶斯推断来选择下一个最有信息量的样本点进行评估。在MATLAB中,可以使用贝叶斯优化库或自行编写代码来实现这一过程。以下是一个简单的贝叶斯优化抽样的MATLAB代码示例:
```matlab
function bayes_optimization_example()
% 定义目标函数,这个函数是我们希望最小化的函数
objective = @(x) (x(1)-1)^2 + (x(2)-2)^2;
% 设置优化器的初始参数
initial_sample_points = [0.5, 0.5]; % 初始采样点
bounds = [0 3; 0 3]; % 搜索变量的边界
% 初始化贝叶斯优化
options = optimoptions('bayesopt', ...
'AcquisitionFunctionName', 'expected-improvement-plus', ...
'IsObjectiveDeterministic', false, ...
'NumSeedPoints', 0); % 不使用种子点
% 运行贝叶斯优化
results = bayesopt(objective, bounds, ...
'MaxObjectiveEvaluations', 50, ...
'IsObjectiveMinimizing', true, ...
'AcquisitionFunctionName', 'expected-improvement-plus', ...
'Options', options);
% 输出最优解
bestPt = bestPoint(results);
fprintf('最优解: x1 = %.4f, x2 = %.4f\n', bestPt(1), bestPt(2));
fprintf('最小目标函数值: %.4f\n', bestPt.Error);
end
```
在这个例子中,我们使用了MATLAB内置的`bayesopt`函数来执行贝叶斯优化。首先定义了目标函数`objective`,然后设置了变量的搜索边界`bounds`和初始采样点`initial_sample_points`。通过`optimoptions`函数设置了优化选项,包括选择的采集函数(这里选择`expected-improvement-plus`),以及指定目标函数非确定性的选项(因为贝叶斯优化通常用于处理不确定性的函数)。最后,我们调用`bayesopt`函数执行优化,并从返回的结果中提取最优解。
请注意,这段代码是一个简化的示例,实际应用中可能需要根据具体问题调整目标函数、搜索空间和优化参数等。
阅读全文