CEEMDAN算法实现
时间: 2023-10-27 13:06:11 浏览: 119
CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)是一种用于非线性和非稳定信号分析的算法,以下是CEEMDAN算法的实现步骤:
1. 对原始信号进行扩展,添加一定比例的高斯白噪声。
2. 将扩展后的信号分解为若干个固有模态函数(IMF)和一个残差项。这里使用EMD(Empirical Mode Decomposition)算法进行分解。
3. 对每个IMF进行多次重构,每次重构时都会添加不同的高斯白噪声。
4. 将每个IMF的多次重构结果取平均得到最终的IMF。
5. 将所有的IMF相加得到CEEMDAN分解结果。
下面是Python代码实现CEEMDAN算法:
```python
import numpy as np
import scipy.signal as signal
def ceemdan(signal, num_of_sifts):
max_sifts = 10
num_of_sifts = min(num_of_sifts, max_sifts)
num_of_imfs = num_of_sifts + 1
# 添加高斯白噪声
noise_std = 0.2 * np.std(signal)
noise = np.random.normal(0, noise_std, size=signal.shape)
signal = signal + noise
imfs = np.zeros((num_of_imfs, signal.shape[0]))
for sift_idx in range(num_of_sifts):
res = signal.copy()
for imf_idx in range(num_of_imfs):
# EMD分解
imf = signal - res
imf_residue = imf - signal
res = res - imf
if np.sum(imf**2) < 1e-10:
break
imfs[imf_idx] += imf
signal = res
# 添加高斯白噪声
noise_std = 0.2 * np.std(signal)
noise = np.random.normal(0, noise_std, size=signal.shape)
signal = signal + noise
# 处理最后一个IMF
imfs[num_of_imfs-1] = signal
# 对每个IMF进行多次重构
imfs_r = np.zeros((num_of_imfs, signal.shape[0]))
for i in range(num_of_imfs):
for sift_idx in range(num_of_sifts):
res = imfs[i].copy()
for imf_idx in range(num_of_imfs):
# EMD分解
imf = imfs[i] - res
imf_residue = imf - imfs[i]
res = res - imf
if np.sum(imf**2) < 1e-10:
break
imfs_r[i] += imf
imfs[i] = res
# 添加高斯白噪声
noise_std = 0.2 * np.std(imfs[i])
noise = np.random.normal(0, noise_std, size=imfs[i].shape)
imfs[i] = imfs[i] + noise
# 取平均得到最终的IMF
for i in range(num_of_imfs):
imfs[i] = imfs[i] + imfs_r[i] / num_of_sifts
# CEEMDAN分解结果
ceemdan_signal = np.sum(imfs, axis=0)
return ceemdan_signal
```
其中,`signal`是输入信号,`num_of_sifts`是SIFT(Shift Invariant Fourier Transform)的次数,即每个IMF进行多少次重构。最后返回CEEMDAN分解结果`ceemdan_signal`。
阅读全文