neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:",knn.score(x_test,y_test)) print("KNN 泛化精度:",knn.score(x_train,y_train))
时间: 2024-04-03 19:31:49 浏览: 133
这段代码使用sklearn库中的K最近邻(K Nearest Neighbor,KNN)分类器对wine_data数据集进行分类建模,并分别计算训练精度和泛化精度。具体来说,代码首先使用KNeighborsClassifier函数定义一个KNN分类器模型,其中neighbors=3表示选取3个最近邻样本来进行分类。然后,使用fit函数对训练集进行拟合,得到一个训练好的模型。
接着,使用score函数分别计算模型在训练集和测试集上的精度,并将结果输出。需要注意的是,训练精度和泛化精度的差距越小,说明模型的泛化能力越好,即能够更好地适应新的数据。如果训练精度高而泛化精度低,则可能存在过拟合问题,需要对模型进行调整。反之,如果训练精度和泛化精度都比较低,则可能存在欠拟合问题,需要增加模型的复杂度或者改变模型的结构。
相关问题
neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:“,knn.score(x_test,y_test)) print("KNN泛化精度: knn.score(x_train,y_train))代码解释
这段代码使用了scikit-learn中的KNeighborsClassifier类来实现K近邻算法,并使用x_train和y_train来训练模型。其中,neighbors是K近邻算法中的超参数,代表选取的最近的K个点来进行预测。knn.score(x_test, y_test)用于计算测试集上的分类精度,knn.score(x_train, y_train)用于计算训练集上的分类精度,以此来判断模型的泛化能力。其中,score()方法返回的是模型的分类精度,即正确分类的样本数量与总样本数量的比例。
wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre dtc.predict(wine_target.iloc[:,1:].values) from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre _pre=dtc.Oredlct(y tact mean_squared_error(y_test,y_pre) print("决策树 训练精度:“,dtc.score(x_test,y_test)) print("决策树 泛化精度:“,dtc.score(x_train,y_train)) #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split -wine_data.ilocl:,1:].values y=wine_data.iloc[:,0].values state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) dtr.predict(wine_target.iloc[:,1:].values) neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:“,knn.score(x_test,y_test)) print("KNN泛化精度: knn.score(x_train,y_train))代码解释
这段代码涉及了三种分类算法:决策树、最近邻分类算法和KNN算法。
首先,代码将数据集分为wine_data和wine_target两部分,其中wine_data是训练集,wine_target是测试集。接着,使用train_test_split函数将wine_data划分为训练集和测试集,其中测试集占总样本的30%。
其次,使用DecisionTreeClassifier类来实现决策树分类算法,其中criterion='entropy'表示使用熵来评价纯度。使用fit函数拟合数据,使用predict函数对测试集进行预测,使用mean_squared_error函数计算预测值和真实值之间的均方误差,使用score函数计算训练集和测试集的分类精度。
接着,使用KNeighborsClassifier类来实现最近邻分类算法和KNN算法,其中n_neighbors表示选取的最近邻的个数。使用fit函数拟合数据,使用predict函数对测试集进行预测,使用score函数计算训练集和测试集的分类精度。
最后,输出训练集和测试集的分类精度。
阅读全文