生成matlab压缩感知omp算法代码
时间: 2023-10-04 15:08:50 浏览: 100
以下是使用Matlab编写的压缩感知OMP算法代码:
```matlab
function [x, residual] = omp(A, y, k)
%OMP Orthogonal Matching Pursuit
% [x, residual] = OMP(A, y, k) computes a k-sparse approximation of
% the solution of the linear system Ax = y, where A is a matrix of size
% mxn and y is a vector of length m. The algorithm terminates when the
% norm of the residual is less than a certain threshold. It returns the
% approximation x and the residual. The algorithm is based on the
% Orthogonal Matching Pursuit algorithm proposed in the paper
% "Matching Pursuits with Orthogonal Matching Pursuit" by Y. Pati,
% R. Rezaiifar and P. Krishnaprasad.
%
% INPUTS:
% A - mxn matrix
% y - m-dimensional vector
% k - sparsity level
%
% OUTPUTS:
% x - n-dimensional vector (k-sparse approximation of the solution of Ax=y)
% residual - m-dimensional vector (residual of the approximation)
[m, n] = size(A);
r = y;
x = zeros(n, 1);
omega = [];
for i = 1:k
max_value = 0;
max_index = 0;
for j = 1:n
if ~ismember(j, omega)
a = A(:, j);
value = abs(a' * r);
if value > max_value
max_value = value;
max_index = j;
end
end
end
omega = [omega max_index];
x(omega) = A(:, omega) \ y;
r = y - A(:, omega) * x(omega);
if norm(r) < 1e-6
break;
end
end
residual = r;
end
```
这是一个基本的OMP算法实现,使用了Matlab中的矩阵运算和控制语句。在输入矩阵A和向量y以及稀疏度k之后,该算法会计算出一个k稀疏的近似解x,并返回残差residual。
阅读全文
相关推荐
![m](https://img-home.csdnimg.cn/images/20250102104920.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)