background=Image.open('cloud.png') graph=np.array(background) wordcloud=WordCloud(front_path='C/windows/Fonts/simsun.ttc', mask=graph, background_color='blue', max_front_size=150, random_state=30) ciyuntu=wordcloud.fit_words(words) plt.imshow(ciyuntu) plt.axis('off') plt.show()代码报错__init__() got an unexpected keyword argument 'front_path'
时间: 2024-03-10 19:50:36 浏览: 140
这个错误是因为 `WordCloud` 类的 `front_path` 参数已经被弃用,应该使用 `font_path` 参数来设置字体路径。你可以将 `front_path` 改为 `font_path` 即可,代码如下所示:
```
background = Image.open('cloud.png')
graph = np.array(background)
wordcloud = WordCloud(font_path='C:/windows/Fonts/simsun.ttc',
mask=graph,
background_color='blue',
max_font_size=150,
random_state=30)
ciyuntu = wordcloud.fit_words(words)
plt.imshow(ciyuntu)
plt.axis('off')
plt.show()
```
注意,在 Windows 系统中,路径分隔符应该使用 `/` 而不是 `\`,否则会被误认为是转义字符。另外,`max_front_size` 应该改为 `max_font_size`,这是一个拼写错误。
相关问题
import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from PIL import Image import matplotlib.pyplot as plt import input_data import model import numpy as np import xlsxwriter num_threads = 4 def evaluate_one_image(): test_dir = 'data/test/' import glob import xlwt test_img = glob.glob(test_dir + '*.jpg') workbook = xlsxwriter.Workbook('formatting.xlsx') worksheet = workbook.add_worksheet('My Worksheet') for index,img in enumerate(test_img): image = Image.open(img) image = image.resize([208, 208]) image_array = np.array(image) with tf.Graph().as_default(): BATCH_SIZE = 1 N_CLASSES = 4 image = tf.cast(image_array, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [1, 208, 208, 3]) logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES) logit = tf.nn.softmax(logit) x = tf.placeholder(tf.float32, shape=[208, 208, 3]) logs_train_dir = 'log/' saver = tf.train.Saver() with tf.Session() as sess: prediction = sess.run(logit, feed_dict={x: image_array}) max_index = np.argmax(prediction) workbook.close() if __name__ == '__main__': evaluate_one_image()改为多线程运算
要将代码改为多线程运算,您可以使用 TensorFlow 的 `tf.train.Coordinator()` 和 `tf.train.start_queue_runners()` 来管理和启动多个线程。以下是修改后的代码示例:
```python
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from PIL import Image
import matplotlib.pyplot as plt
import input_data
import model
import numpy as np
import xlsxwriter
num_threads = 4
def evaluate_one_image(image_array, index):
with tf.Graph().as_default():
BATCH_SIZE = 1
N_CLASSES = 4
image = tf.cast(image_array, tf.float32)
image = tf.image.per_image_standardization(image)
image = tf.reshape(image, [1, 208, 208, 3])
logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES)
logit = tf.nn.softmax(logit)
x = tf.placeholder(tf.float32, shape=[208, 208, 3])
logs_train_dir = 'log/'
saver = tf.train.Saver()
with tf.Session() as sess:
prediction = sess.run(logit, feed_dict={x: image_array})
max_index = np.argmax(prediction)
# 将结果写入 Excel 表格
workbook = xlsxwriter.Workbook('formatting.xlsx')
worksheet = workbook.add_worksheet('My Worksheet')
worksheet.write(index, 0, max_index)
workbook.close()
def evaluate_images(test_img):
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for index, img in enumerate(test_img):
image = Image.open(img)
image = image.resize([208, 208])
image_array = np.array(image)
# 在每个线程中调用 evaluate_one_image()
tf.compat.v1.threading.Thread(target=evaluate_one_image, args=(image_array, index)).start()
# 请求停止所有线程
coord.request_stop()
# 等待所有线程完成
coord.join(threads)
if __name__ == '__main__':
test_dir = 'data/test/'
import glob
import xlwt
test_img = glob.glob(test_dir + '*.jpg')
evaluate_images(test_img)
```
在修改后的代码中,我们首先定义了一个新的函数 `evaluate_one_image()`,它接受图像数组和索引作为参数,表示要评估的单个图像。在这个函数中,我们将使用传递的图像数组进行评估操作。
然后,在 `evaluate_images()` 函数中,我们使用 `tf.train.Coordinator()` 和 `tf.train.start_queue_runners()` 启动了多个线程。在每个线程中,我们使用 `tf.compat.v1.threading.Thread()` 创建一个新的线程,并在其中调用 `evaluate_one_image()` 函数来评估图像。
最后,在主函数中通过调用 `evaluate_images()` 函数来启动评估过程。
这样,您就可以利用多线程同时评估多个图像了。
希望对您有帮助!如果您还有其他问题,请随时提问。
for index,img in enumerate(test_img): image = Image.open(img) image = image.resize([208, 208]) image_array = np.array(image) with tf.Graph().as_default(): BATCH_SIZE = 1 N_CLASSES = 4 image = tf.cast(image_array, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [1, 208, 208, 3]) logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES) logit = tf.nn.softmax(logit) x = tf.placeholder(tf.float32, shape=[208, 208, 3]) 这里想要输入16张图应该怎么修改
要修改代码以适应输入16张图像,您需要进行以下更改:
1. 将 `BATCH_SIZE` 的值从 1 改为 16。
2. 修改图像张量的形状,使其与新的批量大小匹配。将 `image = tf.reshape(image, [1, 208, 208, 3])` 改为 `image = tf.reshape(image, [16, 208, 208, 3])`。
3. 创建一个占位符 `x`,其形状为 `[16, 208, 208, 3]`。
修改后的代码如下所示:
```python
for index, img in enumerate(test_img):
image = Image.open(img)
image = image.resize([208, 208])
image_array = np.array(image)
***
阅读全文