vmd模态分量重构信号matlab代码
时间: 2023-05-24 20:06:21 浏览: 625
对于VMD模态分量重构信号,我们可以使用以下MATLAB代码进行实现:
首先,我们要编写函数来计算VMD分解:
```matlab
function [u, u_hat, omega] = VMD(x, alpha, tau, K, DC)
% x: input signal
% alpha: balancing parameter
% tau: time-step
% K: the number of intrinsic mode functions
% DC: the constraint condition
% set some parameters
N = length(x);
t = (0:N-1) .* tau;
% centering the signals and setting initial omega
x = x - mean(x);
omega = 2 * pi * ((0:N-1)' - N/2) ./ N / tau;
% preallocating memory for u and u_hat
u = zeros(N, K);
u_hat = zeros(N, K);
for k = 1:K
% Decompose the signal and extract one component u_hat at each iteration
u_hat(:,k) = hilbert(x) .* exp(1j * omega * t);
u_hat = omega_filter(u_hat, alpha, tau);
u(:,k) = real(u_hat(:,k));
x = x - u(:,k);
if DC == 1
x = x - mean(x);
end
omega = omega + alpha * hilbert(u_hat(:,k)) .* exp(-1j * omega * t);
end
end
function Xf = omega_filter(Xf, alpha, tau)
% Conduct omega filtering for one IMF
df = 1 / tau / length(Xf);
f = (0:length(Xf)-1)' ./ length(Xf) / tau;
Norm_f = min(f, abs(f(end:-1:1)-1));
Norm_f = repmat(Norm_f, 1, size(Xf,2));
for j = 1:10 % perform omega filtering for 10 times
Xf = Xf .* (1 - alpha * Norm_f .* repmat(sum(Xf.*conj(Xf),1),length(Xf),1));
Xf(df>0.5*max(f)) = 0;
end
end
```
接着,我们可以使用以下代码进行信号重构:
```matlab
% load the signal
load('signal.mat');
% set the parameters
alpha = 500;
tau = 1;
K = 5;
DC = 1;
% VMD decomposition
[u, u_hat, omega] = VMD(x, alpha, tau, K, DC);
% signal reconstruction
x_recon = zeros(size(x));
for k = 1:K
x_recon = x_recon + u(:,k);
end
```
其中,`x`为输入信号,`alpha`为平衡参数,`tau`为时间步长,`K`为需要分解的模态分量数,`DC`为是否进行约束条件。
完成以上步骤后,我们即可得到VMD模态分量重构后的信号。
阅读全文