写一段基于yale人脸数据集进行pca+svm的代码
时间: 2024-12-19 07:22:25 浏览: 23
yale人脸数据+PCA进行降维处理
在Python中,你可以使用scikit-learn库来实现基于Yale人脸数据集的PCA(主成分分析)和SVM(支持向量机)模型。以下是示例代码:
```python
# 导入所需的库
from sklearn.datasets import fetch_lfw_people
from sklearn.decomposition import PCA
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载Yale人脸数据集
data = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
X = data.images.reshape((len(data.images), -1)) # 将图像数据展平为一维数组
y = data.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 应用PCA进行特征提取
pca = PCA(n_components=150) # 可视化效果好,选择150个主成分
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)
# 初始化SVM模型
svm = SVC(kernel='linear') # 线性核,可根据需要尝试其他核函数
# 训练模型
svm.fit(X_train_pca, y_train)
# 预测
predictions = svm.predict(X_test_pca)
# 评估性能
accuracy = accuracy_score(y_test, predictions)
print(f"Accuracy: {accuracy * 100}%")
#
阅读全文