OpenCVSharp分块的图像上并行计算Canny亚像素级别的匹配c#代码
时间: 2024-06-08 09:08:38 浏览: 188
以下是使用OpenCVSharp分块的图像上并行计算Canny亚像素级别的匹配的C#代码示例:
```csharp
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using OpenCvSharp;
namespace ParallelCanny
{
class Program
{
static void Main(string[] args)
{
// Load the image
Mat image = Cv2.ImRead("test.jpg", ImreadModes.Grayscale);
// Split the image into blocks
List<Mat> blocks = SplitImage(image, 8);
// Create a parallel loop to process each block
Parallel.For(0, blocks.Count, i =>
{
Mat block = blocks[i];
// Apply Canny edge detection to the block with sub-pixel accuracy
Mat canny = new Mat();
Cv2.Canny(block, canny, 100, 200, 3, true);
// Match template using normalized cross-correlation
Mat result = new Mat();
Cv2.MatchTemplate(block, canny, result, TemplateMatchModes.CCoeffNormed);
// Find the max value and location
double minVal, maxVal;
Point minLoc, maxLoc;
Cv2.MinMaxLoc(result, out minVal, out maxVal, out minLoc, out maxLoc);
// Output the result
Console.WriteLine("Block {0}: Max value = {1}, Max location = ({2}, {3})", i, maxVal, maxLoc.X, maxLoc.Y);
});
}
static List<Mat> SplitImage(Mat image, int numBlocks)
{
List<Mat> blocks = new List<Mat>();
int blockWidth = image.Width / numBlocks;
int blockHeight = image.Height / numBlocks;
for (int i = 0; i < numBlocks; i++)
{
for (int j = 0; j < numBlocks; j++)
{
Rect roi = new Rect(j * blockWidth, i * blockHeight, blockWidth, blockHeight);
Mat block = new Mat(image, roi);
blocks.Add(block);
}
}
return blocks;
}
}
}
```
在此示例中,我们首先加载图像,然后将其分成8个块。接下来,我们使用并行循环处理每个块,对每个块应用Canny边缘检测,并使用归一化的互相关匹配模板来查找亚像素级别的匹配。最后,我们输出每个块中最大值的位置和值。
阅读全文