imu的回调函数定义
时间: 2023-11-11 13:01:00 浏览: 91
imu的回调函数定义通常是这样的:
```c++
void imuCallback(const sensor_msgs::Imu::ConstPtr& msg)
{
// 处理IMU数据
}
```
其中,`sensor_msgs::Imu` 是 ROS 中用于传输 IMU 数据的消息类型,`msg` 是指向该消息的指针。在回调函数中,我们可以对 IMU 数据进行处理,例如计算姿态、角速度等。
相关问题
激光雷达+imu畸变补偿ros代码
以下是一个基于ROS的激光雷达+IMU畸变补偿的示例代码:
```
#include <ros/ros.h>
#include <sensor_msgs/Imu.h>
#include <sensor_msgs/LaserScan.h>
#include <tf/transform_listener.h>
#include <tf/transform_broadcaster.h>
class LaserImuCalibration
{
public:
LaserImuCalibration();
void imuCallback(const sensor_msgs::Imu::ConstPtr& imu_msg);
void scanCallback(const sensor_msgs::LaserScan::ConstPtr& scan_msg);
private:
ros::NodeHandle nh_;
ros::Subscriber imu_sub_;
ros::Subscriber scan_sub_;
tf::TransformListener tf_listener_;
tf::TransformBroadcaster tf_broadcaster_;
ros::Publisher scan_pub_;
sensor_msgs::LaserScan scan_msg_;
bool imu_received_;
bool scan_received_;
double imu_roll_, imu_pitch_, imu_yaw_;
double imu_gx_, imu_gy_, imu_gz_;
double imu_ax_, imu_ay_, imu_az_;
double imu_time_;
double scan_time_;
};
LaserImuCalibration::LaserImuCalibration() : imu_received_(false), scan_received_(false)
{
imu_sub_ = nh_.subscribe("/imu/data", 1, &LaserImuCalibration::imuCallback, this);
scan_sub_ = nh_.subscribe("/scan", 1, &LaserImuCalibration::scanCallback, this);
scan_pub_ = nh_.advertise<sensor_msgs::LaserScan>("/scan_calibrated", 1);
}
void LaserImuCalibration::imuCallback(const sensor_msgs::Imu::ConstPtr& imu_msg)
{
imu_received_ = true;
imu_roll_ = imu_msg->orientation.x;
imu_pitch_ = imu_msg->orientation.y;
imu_yaw_ = imu_msg->orientation.z;
imu_gx_ = imu_msg->angular_velocity.x;
imu_gy_ = imu_msg->angular_velocity.y;
imu_gz_ = imu_msg->angular_velocity.z;
imu_ax_ = imu_msg->linear_acceleration.x;
imu_ay_ = imu_msg->linear_acceleration.y;
imu_az_ = imu_msg->linear_acceleration.z;
imu_time_ = imu_msg->header.stamp.toSec();
}
void LaserImuCalibration::scanCallback(const sensor_msgs::LaserScan::ConstPtr& scan_msg)
{
scan_received_ = true;
scan_time_ = scan_msg->header.stamp.toSec();
scan_msg_ = *scan_msg;
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "laser_imu_calibration");
LaserImuCalibration node;
while (ros::ok())
{
ros::spinOnce();
if (node.imu_received_ && node.scan_received_)
{
// Get the laser scanner transformation
tf::StampedTransform laser_transform;
try
{
node.tf_listener_.lookupTransform("laser", "imu", ros::Time(0), laser_transform);
}
catch (tf::TransformException ex)
{
ROS_ERROR("%s", ex.what());
continue;
}
// Compute the rotation matrix from the IMU data
tf::Quaternion q(imu_roll_, imu_pitch_, imu_yaw_);
tf::Matrix3x3 m(q);
double imu_roll, imu_pitch, imu_yaw;
m.getRPY(imu_roll, imu_pitch, imu_yaw);
// Compute the IMU acceleration in the laser scanner frame
tf::Vector3 imu_acceleration(imu_ax_, imu_ay_, imu_az_);
imu_acceleration = laser_transform.getBasis() * imu_acceleration;
// Compute the IMU angular velocity in the laser scanner frame
tf::Vector3 imu_angular_velocity(imu_gx_, imu_gy_, imu_gz_);
imu_angular_velocity = laser_transform.getBasis() * imu_angular_velocity;
// Compute the time offset between the IMU and the laser scanner
double time_offset = scan_time_ - imu_time_;
// Update the laser scanner pose using the IMU data
tf::Quaternion q_laser = laser_transform.getRotation();
tf::Quaternion q_imu(imu_roll, imu_pitch, imu_yaw);
tf::Quaternion q_new = q_imu * q_laser;
tf::Transform laser_transform_new(q_new, laser_transform.getOrigin());
laser_transform_new.setOrigin(laser_transform_new.getOrigin() + laser_transform_new.getBasis() * imu_acceleration * time_offset);
laser_transform_new.setRotation(laser_transform_new.getRotation() + tf::Quaternion(0, 0, imu_angular_velocity.getZ() * time_offset, 1) * laser_transform_new.getRotation() * 0.5);
// Publish the calibrated laser scanner data
scan_msg_.header.stamp = ros::Time::now();
tf::transformStampedTFToMsg(tf::StampedTransform(laser_transform_new, scan_msg_.header.stamp, "imu", "laser"), scan_msg_.header.frame_id);
scan_pub_.publish(scan_msg_);
// Broadcast the laser scanner pose
tf_broadcaster_.sendTransform(tf::StampedTransform(laser_transform_new, ros::Time::now(), "imu", "laser"));
// Reset the received flags
node.imu_received_ = false;
node.scan_received_ = false;
}
}
return 0;
}
```
该代码中,首先定义了LaserImuCalibration类,该类订阅IMU数据和激光雷达数据,然后计算IMU数据和激光雷达数据之间的转换关系,最后发布校准后的激光雷达数据。
在imuCallback回调函数中,获取IMU的姿态角、角速度和加速度等数据。在scanCallback回调函数中,获取激光雷达数据。
在计算激光雷达和IMU之间的转换关系时,需要获取激光雷达和IMU之间的变换关系,可以使用tf库中的tf_listener查找二者之间的变换关系。然后,根据IMU的姿态角、角速度和加速度等数据,计算出激光雷达在IMU坐标系下的位姿,并通过发布校准后的激光雷达数据和广播激光雷达位姿,完成畸变补偿。
需要注意的是,该代码仅供参考,具体实现需要根据实际情况进行修改。
基于tc264的imu963ra陀螺仪与磁力计融合代码
以下是基于TC264的IMU963RA陀螺仪与磁力计融合代码的示例:
```
#include "Ifx_Types.h"
#include "IfxCpu.h"
#include "IfxScuWdt.h"
#include "IMU963RA.h"
#include "math.h"
#define PI 3.14159265358979323846
// 定义陀螺仪和磁力计的数据结构
typedef struct
{
float x;
float y;
float z;
} Vector;
// 定义四元数的数据结构
typedef struct
{
float q0;
float q1;
float q2;
float q3;
} Quaternion;
// 定义陀螺仪和磁力计的数据
Vector gyro;
Vector mag;
// 定义四元数
Quaternion q = {1, 0, 0, 0};
// 定义采样时间和角速度测量误差
float dt = 0.01;
float gyroDrift = 0.1 * PI / 180;
// 定义加速度计和磁力计的校准参数
Vector accelBias = {-0.1, 0.1, -0.1};
Vector magBias = {30, 0, 0};
float magScale = 1.0 / 200;
// 定义陀螺仪和磁力计的原始数据
int16 rawGyroX;
int16 rawGyroY;
int16 rawGyroZ;
int16 rawMagX;
int16 rawMagY;
int16 rawMagZ;
// 计算四元数的一阶微分方程
Quaternion quaternionDerivative(Quaternion q, Vector omega)
{
Quaternion qDot;
qDot.q0 = -0.5 * (q.q1 * omega.x + q.q2 * omega.y + q.q3 * omega.z);
qDot.q1 = 0.5 * (q.q0 * omega.x + q.q2 * omega.z - q.q3 * omega.y);
qDot.q2 = 0.5 * (q.q0 * omega.y - q.q1 * omega.z + q.q3 * omega.x);
qDot.q3 = 0.5 * (q.q0 * omega.z + q.q1 * omega.y - q.q2 * omega.x);
return qDot;
}
// 计算四元数的一阶积分方程
Quaternion quaternionIntegration(Quaternion q, Quaternion qDot)
{
Quaternion qInt;
qInt.q0 = q.q0 + qDot.q0 * dt;
qInt.q1 = q.q1 + qDot.q1 * dt;
qInt.q2 = q.q2 + qDot.q2 * dt;
qInt.q3 = q.q3 + qDot.q3 * dt;
return qInt;
}
// 陀螺仪数据的处理
void gyroHandler()
{
// 读取陀螺仪的原始数据
IMU963RA_readGyro(&rawGyroX, &rawGyroY, &rawGyroZ);
// 将原始数据转换为角速度
gyro.x = (float)rawGyroX / 32768 * 2000 * PI / 180 - gyroDrift;
gyro.y = (float)rawGyroY / 32768 * 2000 * PI / 180 - gyroDrift;
gyro.z = (float)rawGyroZ / 32768 * 2000 * PI / 180 - gyroDrift;
// 计算四元数的微分方程
Quaternion qDot = quaternionDerivative(q, gyro);
// 计算四元数的积分方程
q = quaternionIntegration(q, qDot);
}
// 磁力计数据的处理
void magHandler()
{
// 读取磁力计的原始数据
IMU963RA_readMag(&rawMagX, &rawMagY, &rawMagZ);
// 将原始数据转换为磁场向量
mag.x = ((float)rawMagX - magBias.x) * magScale;
mag.y = ((float)rawMagY - magBias.y) * magScale;
mag.z = ((float)rawMagZ - magBias.z) * magScale;
// 将磁场向量转换为四元数
Vector b = {mag.x, mag.y, mag.z};
Vector a = {0, 0, 1};
Vector v = {q.q1, q.q2, q.q3};
Vector h = vectorCrossProduct(v, b);
Vector n = vectorCrossProduct(v, h);
float e = vectorDotProduct(v, b);
Quaternion qMag = {sqrt(e * e + vectorLengthSquare(h) * vectorLengthSquare(v)), 0, 0, e + q.q0};
qMag.q0 /= vectorLength(qMag);
qMag.q1 /= vectorLength(qMag);
qMag.q2 /= vectorLength(qMag);
qMag.q3 /= vectorLength(qMag);
// 融合磁力计和陀螺仪的数据
Quaternion qError = quaternionMultiply(q, quaternionConjugate(qMag));
Vector correction = {qError.q1, qError.q2, qError.q3};
correction = vectorScale(correction, 2);
correction = vectorScale(correction, 0.1);
gyro = vectorSubtract(gyro, correction);
// 计算四元数的微分方程
Quaternion qDot = quaternionDerivative(q, gyro);
// 计算四元数的积分方程
q = quaternionIntegration(q, qDot);
}
// 主函数
int core0_main()
{
// 初始化IMU963RA
IMU963RA_init();
// 设置陀螺仪和磁力计的回调函数
IMU963RA_setGyroHandler(gyroHandler);
IMU963RA_setMagHandler(magHandler);
// 启动IMU963RA
IMU963RA_start();
// 主循环
while (TRUE)
{
// 喂狗
IfxScuWdt_clearCpuEndinit();
IfxScuWdt_service();
IfxScuWdt_setCpuEndinit();
}
return 0;
}
```
该代码使用了四元数来融合陀螺仪和磁力计的数据,并实现了一阶微分方程和一阶积分方程的计算。同时,该代码还对陀螺仪和磁力计的数据进行了校准,并使用了回调函数来处理陀螺仪和磁力计的数据。
阅读全文