netG.load_state_dict()
时间: 2024-01-15 16:17:17 浏览: 89
`netG.load_state_dict()`是一个PyTorch函数,用于将预训练模型的参数加载到神经网络中。具体来说,它将一个state_dict对象作为输入,并使用其中的参数来更新神经网络的参数。下面是一个示例:
```python
import torch
from torchvision import models
# 加载预训练模型
model = models.resnet18(pretrained=True)
# 保存模型参数
torch.save(model.state_dict(), 'model.pth')
# 创建新的模型实例
new_model = models.resnet18()
# 加载预训练模型的参数
state_dict = torch.load('model.pth')
new_model.load_state_dict(state_dict)
# 使用新模型进行推理
input = torch.randn(1, 3, 224, 224)
output = new_model(input)
```
在上面的示例中,我们首先加载了一个预训练的ResNet-18模型,并将其保存到了`model.pth`文件中。然后,我们创建了一个新的ResNet-18模型,并使用`load_state_dict()`函数将预训练模型的参数加载到了新模型中。最后,我们使用新模型进行了推理。
相关问题
netG.load_state_dict( torch.load("./model/netG_streetview.pth", map_location=lambda storage, location: storage)["state_dict"])
这段代码是用来加载已经训练好的模型参数的。具体来说,它使用 `torch.load()` 函数加载了保存在文件 `./model/netG_streetview.pth` 中的模型参数,然后将这些参数加载到预定义的 `netG` 模型中。其中的 `map_location` 参数用于指定将模型加载到哪个设备上。如果写成 `map_location='cpu'`,则表示将模型加载到 CPU 上;如果写成 `map_location=torch.device('cuda:0')`,则表示将模型加载到 GPU 上的第 0 个设备上。最后,通过 `["state_dict"]` 的方式获取字典中存储的模型参数。
opt = config.get_arguments().parse_args() netG = Generator(opt) for param in netG.parameters(): param.requires_grad = False ckpt_dir = os.path.join(opt.checkpoints, opt.dataset, opt.attack_mode, 'target_' + str(opt.target_label)) ckpt_path = os.path.join(ckpt_dir, "{}_{}_ckpt.pth.tar".format(opt.attack_mode, opt.dataset)) state_dict = torch.load(ckpt_path) netG.to(opt.device) netG.eval() netG.load_state_dict(state_dict["netG"]) print(">=========================< load netG >==========================<") netM = Generator(opt, out_channels=1) netM.load_state_dict(state_dict["netM"]) print(">=========================< load netM >==========================<") netM.to(opt.device) netM.eval() netM.requires_grad_(False) test_dataloader = get_dataloader(opt, train=False, bd=False) inputs, targets = next(iter(test_dataloader)) inputs = inputs.to(opt.device) patterns = netG(inputs) patterns = netG.normalize_pattern(patterns) batch_masks = netM.threshold(netM(inputs)) bd_inputs = inputs + (patterns - inputs) * batch_masks bd_inputs = netG.denormalize_pattern(bd_inputs) * 255.0 bd_inputs = bd_inputs.detach().cpu().numpy() bd_inputs = np.clip(bd_inputs, 0, 255).astype(np.uint8).transpose((0, 2, 3, 1))怎么把这个bd_inputs的图片一张一张按PNG格式保存下来
你可以使用PIL库中的Image模块来保存bd_inputs的图像。以下是一个示例代码:
```python
from PIL import Image
# 保存bd_inputs中的每张图像
for i in range(len(bd_inputs)):
image = Image.fromarray(bd_inputs[i])
image.save(f"image_{i}.png")
```
这将保存每张图像为PNG格式,并以"image_0.png","image_1.png"等命名。你可以根据需要修改文件名或保存路径。
阅读全文