遗传算法python实例代码
时间: 2023-11-05 12:05:03 浏览: 134
非常抱歉,根据提供的引用内容,我没有找到指定的遗传算法的Python实例代码。但是,我可以向您推荐一个资源,该资源包含了实现遗传算法的Python代码示例。您可以参考Yarpiz网站上的“Practical Genetic Algorithms in Python and MATLAB”视频教程。该教程提供了实用的遗传算法实现,并且可能包含了Python的示例代码。您可以在以下链接中找到更多信息:[链接](https://yarpiz.com/632/ypga191215-practical-genetic-algorithms-in-python-and-matlab)
相关问题
遗传算法python实例代码加注释
下面是一个遗传算法的 Python 实例代码,我添加了一些注释来帮助你理解代码的每个部分。
```python
import random
# 目标函数
def fitness(individual):
# 计算个体的适应度,这里假设目标函数为求和
return sum(individual)
# 初始化种群
def init_population(pop_size, gene_size):
# 随机生成种群,每个个体包含 gene_size 个基因
population = []
for i in range(pop_size):
individual = [random.randint(0, 1) for _ in range(gene_size)]
population.append(individual)
return population
# 选择操作
def selection(population, num_parents):
# 选择适应度最好的 num_parents 个个体作为父代
parents = []
for _ in range(num_parents):
max_fitness = 0
max_individual = None
for individual in population:
if fitness(individual) > max_fitness:
max_fitness = fitness(individual)
max_individual = individual
parents.append(max_individual)
population.remove(max_individual)
return parents
# 交叉操作
def crossover(parents, offspring_size):
# 随机选择两个父代进行交叉,生成 offspring_size 个后代
offspring = []
for _ in range(offspring_size):
parent1 = random.choice(parents)
parent2 = random.choice(parents)
crossover_point = random.randint(1, len(parent1) - 1)
offspring.append(parent1[:crossover_point] + parent2[crossover_point:])
return offspring
# 变异操作
def mutation(offspring):
# 对每个后代的每个基因进行变异,以一定概率将 0 变成 1,将 1 变成 0
for individual in offspring:
for i in range(len(individual)):
if random.random() < mutation_rate:
individual[i] = 1 - individual[i]
# 遗传算法主函数
def genetic_algorithm(pop_size, gene_size, num_parents, offspring_size, num_generations, mutation_rate):
population = init_population(pop_size, gene_size)
for i in range(num_generations):
parents = selection(population, num_parents)
offspring = crossover(parents, offspring_size)
mutation(offspring)
population = parents + offspring
best_individual = max(population, key=fitness)
return best_individual
# 测试遗传算法函数
pop_size = 100
gene_size = 10
num_parents = 20
offspring_size = 80
num_generations = 100
mutation_rate = 0.1
best_individual = genetic_algorithm(pop_size, gene_size, num_parents, offspring_size, num_generations, mutation_rate)
print("Best individual:", best_individual, "Fitness:", fitness(best_individual))
```
这是一个简单的遗传算法示例,包括以下函数:
- `fitness()`:计算个体的适应度,这里假设目标函数为求和。
- `init_population()`:随机生成种群,每个个体包含 gene_size 个基因。
- `selection()`:选择适应度最好的 num_parents 个个体作为父代。
- `crossover()`:随机选择两个父代进行交叉,生成 offspring_size 个后代。
- `mutation()`:对每个后代的每个基因进行变异,以一定概率将 0 变成 1,将 1 变成 0。
- `genetic_algorithm()`:遗传算法主函数,在每一代中执行选择、交叉和变异操作,并返回最优个体。
在此示例中,我们使用遗传算法来优化一个包含 10 个基因的个体,目标函数为求和。算法将运行 100 代,种群大小为 100,每代选择适应度最好的 20 个个体作为父代,生成 80 个后代,并以 0.1 的概率对每个后代的每个基因进行变异。最终输出最优个体和其适应度。
遗传算法python实例
以下是一个简单的遗传算法Python实现的示例代码:
```python
import random
# 定义目标函数
def fitness_function(chromosome):
x = chromosome[0]
y = chromosome[1]
return x**2 + y**2
# 初始化种群
def initial_population(population_size, chromosome_length):
population = []
for i in range(population_size):
chromosome = []
for j in range(chromosome_length):
chromosome.append(random.uniform(-10, 10))
population.append(chromosome)
return population
# 选择操作(轮盘赌算法)
def selection(population, fitness_values):
total_fitness = sum(fitness_values)
probabilities = [fitness / total_fitness for fitness in fitness_values]
selected_indices = []
for i in range(len(population)):
pick = random.uniform(0, 1)
current = 0
for j in range(len(population)):
current += probabilities[j]
if current > pick:
selected_indices.append(j)
break
selected_population = [population[i] for i in selected_indices]
return selected_population
# 交叉操作
def crossover(parent1, parent2):
crossover_point = random.randint(1, len(parent1) - 1)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
return child1, child2
# 变异操作
def mutation(chromosome, mutation_rate):
for i in range(len(chromosome)):
if random.uniform(0, 1) < mutation_rate:
chromosome[i] += random.uniform(-1, 1)
return chromosome
# 主程序
population_size = 50
chromosome_length = 2
mutation_rate = 0.1
generations = 50
population = initial_population(population_size, chromosome_length)
for generation in range(generations):
fitness_values = [fitness_function(chromosome) for chromosome in population]
selected_population = selection(population, fitness_values)
new_population = []
while len(new_population) < population_size:
parent1, parent2 = random.sample(selected_population, 2)
child1, child2 = crossover(parent1, parent2)
child1 = mutation(child1, mutation_rate)
child2 = mutation(child2, mutation_rate)
new_population.append(child1)
new_population.append(child2)
population = new_population
best_chromosome = min(population, key=fitness_function)
best_fitness = fitness_function(best_chromosome)
print("Best solution found: ", best_chromosome)
print("Best fitness found: ", best_fitness)
```
该示例代码实现了一个简单的遗传算法来最小化二元函数 $x^2 + y^2$。在主程序中,我们首先初始化种群,然后进行一系列进化操作,包括选择、交叉和变异。最后,我们找到最小化目标函数的最佳解并输出结果。
请注意,这只是一个基本的示例代码,如果要使用遗传算法解决更复杂的问题,需要根据具体情况进行调整和优化。
阅读全文