双种群遗传算法的python代码
时间: 2024-10-24 11:01:13 浏览: 26
双种群遗传算法.zip
3星 · 编辑精心推荐
双种群遗传算法是一种优化搜索策略,它将种群分为两个子群体,通常称为主种群和辅助种群。Python代码实现时会利用numpy等库来操作向量和矩阵,以及random库来进行随机选择。下面是一个简化的双种群遗传算法的基本框架:
```python
import numpy as np
import random
# 定义适应度函数和初始化种群
def fitness_function(population):
# ...根据具体问题计算每个个体的适应度...
return fitness
def initialize_population(size, bounds):
population = np.random.uniform(bounds[0], bounds[1], size)
return population
# 主种群和辅助种群的大小
main_pop_size = 50
aux_pop_size = 50
# 初始化两个种群
main_population = initialize_population(main_pop_size, [0, 100])
aux_population = initialize_population(aux_pop_size, [0, 100])
# 迭代循环
for _ in range(max_iterations):
# 更新主种群
main_children = crossover_and_mutate(main_population, crossover_rate, mutation_rate)
main_population = elitism_selection(main_population, main_children)
# 更新辅助种群
aux_children = crossover_and_mutate(aux_population, crossover_rate, mutation_rate)
aux_population = elitism_selection(aux_population, aux_children)
# 混合种群
combined_population = np.concatenate((main_population, aux_population))
best_individual = combined_population[np.argmax(fitness_function(combined_population))]
# 结果和最佳解
print("Best individual found:", best_individual)
```
在这个例子中,`crossover_and_mutate()`函数用于交叉和变异操作,`elitism_selection()`负责精英保留机制。具体的交叉、变异规则和选择方法需要根据问题的具体需求来设计。
阅读全文