双种群遗传算法代码实例
时间: 2024-10-24 13:01:32 浏览: 25
双种群遗传算法是一种优化搜索策略,它结合了两个独立的种群(通常是随机初始化的一组解),通常用于解决复杂的组合优化问题。这种算法通常包含两个阶段:一种是适应度较高的种群(称为精英种群)和另一种是普通种群。以下是简化的Python代码示例:
```python
import numpy as np
class DualPopulationGA:
def __init__(self, problem_size, elite_ratio, crossover_rate, mutation_rate):
self.problem_size = problem_size
self.elite_ratio = elite_ratio
self.crossover_rate = crossover_rate
self.mutation_rate = mutation_rate
self.elite_population = None
self.normal_population = None
def initialize(self, population_size):
self.elite_population = np.random.uniform(0, 1, (int(population_size * self.elite_ratio), self.problem_size))
self.normal_population = np.random.uniform(0, 1, (population_size - int(population_size * self.elite_ratio), self.problem_size))
# 简化版选择、交叉和变异操作
def evolve(self, fitness_func):
self.update_fitness(fitness_func)
elite_selected = self.select_elites()
offspring = self.cross_over_and_mutate(elite_selected)
self.normal_population = self.normal_population + offspring
self.normal_population = self.normalize_population()
# ...其他辅助函数省略...
def select_elites(self):
elite_fitness = [fitness_func(individual) for individual in self.elite_population]
elite_indices = np.argsort(-np.array(elite_fitness))[:int(self.elite_ratio * len(self.elite_population))]
return self.elite_population[elite_indices]
# ...交叉和变异的具体实现省略...
# 使用示例
ga = DualPopulationGA(problem_size=10, elite_ratio=0.2, crossover_rate=0.8, mutation_rate=0.01)
ga.initialize(population_size=100)
for _ in range(num_iterations):
ga.evolve(fitness_func)
```
这个例子中,`fitness_func`是一个评估个体适应度的函数,`update_fitness`、`cross_over_and_mutate`等是算法的核心部分,包括计算适应度值、基因重组和突变等过程。实际应用中,你需要根据具体的优化问题调整这些细节。
阅读全文