多目标遗传算法 python代码
时间: 2023-09-17 22:09:43 浏览: 123
多目标遗传算法代码
4星 · 用户满意度95%
当然,我可以为你提供一个基本的多目标遗传算法的Python代码示例。以下是一个简单的实现:
```python
import random
# 定义种群大小、染色体长度、变异率和交叉率
pop_size = 50
chrom_length = 10
mutation_rate = 0.01
crossover_rate = 0.6
# 初始化种群
def init_population(pop_size, chrom_length):
population = []
for _ in range(pop_size):
chromosome = [random.randint(0, 1) for _ in range(chrom_length)]
population.append(chromosome)
return population
# 计算适应度
def evaluate(chromosome):
fitness1 = sum(chromosome)
fitness2 = len(chromosome) - fitness1
return fitness1, fitness2
# 选择操作
def selection(population):
fitness_values = [evaluate(chromosome) for chromosome in population]
total_fitness = sum(sum(fitness) for fitness in fitness_values)
probabilities = [sum(fitness) / total_fitness for fitness in fitness_values]
# 轮盘赌选择
selected_indices = random.choices(range(pop_size), probabilities, k=pop_size)
selected_population = [population[i] for i in selected_indices]
return selected_population
# 交叉操作
def crossover(population):
offspring = []
for i in range(0, pop_size, 2):
parent1 = population[i]
parent2 = population[i+1]
if random.random() < crossover_rate:
crossover_point = random.randint(1, chrom_length-1)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
else:
child1 = parent1
child2 = parent2
offspring.append(child1)
offspring.append(child2)
return offspring
# 变异操作
def mutation(population):
for chromosome in population:
for i in range(chrom_length):
if random.random() < mutation_rate:
chromosome[i] = 1 - chromosome[i]
return population
# 主循环
def genetic_algorithm(pop_size, chrom_length):
population = init_population(pop_size, chrom_length)
num_generations = 100
for _ in range(num_generations):
selected_population = selection(population)
offspring = crossover(selected_population)
mutated_offspring = mutation(offspring)
population = mutated_offspring
# 打印最终种群及其适应度
final_fitness_values = [evaluate(chromosome) for chromosome in population]
print("Final Population:")
for chromosome, fitness in zip(population, final_fitness_values):
print(chromosome, fitness)
# 运行遗传算法
genetic_algorithm(pop_size, chrom_length)
```
这只是一个简单的多目标遗传算法的实现示例,你可以根据自己的需求进行修改和扩展。请注意,此代码只是基本示例,并没有考虑算法的性能和优化。在实际应用中,你可能需要进行更多的调整和改进。
阅读全文