predictions = [] for i in range(len(val_dataset.columns)): if i == 0: predictions.append(np.mean(train_dataset[train_dataset.columns[-30:]].values, axis=1)) if i < 31 and i > 0: predictions.append(0.5 * (np.mean(train_dataset[train_dataset.columns[-30+i:]].values, axis=1) + \ np.mean(predictions[:i], axis=0))) if i > 31: predictions.append(np.mean([predictions[:i]], axis=1)) predictions = np.transpose(np.array([row.tolist() for row in predictions])) 作用分析
时间: 2024-01-31 21:02:58 浏览: 115
这段代码的作用是生成一组预测值(predictions)。
首先,通过循环遍历数据集的每一列,其中第一列(i==0)的预测值是训练集(train_dataset)中最后30列数据的平均值(np.mean(train_dataset[train_dataset.columns[-30:]].values, axis=1))。
对于其他列,i在1到31之间时,预测值是前i-1个预测值和训练集中后30+i列数据的平均值的平均值(0.5 * (np.mean(train_dataset[train_dataset.columns[-30+i:]].values, axis=1) + np.mean(predictions[:i], axis=0)))。
当i大于31时,预测值是前i-1个预测值的平均值的平均值(np.mean([predictions[:i]], axis=1))。
最后,将生成的所有预测值转置为矩阵(np.transpose)并返回。
阅读全文